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Sommario

I sistemi decentralizzati hanno permesso agli utenti di condividere informazioni

senza la presenza di un intermediario centralizzato che possiede la sovranità sui

dati scambiati, rischi di sicurezza e la possibilità di colli di bottiglia. Tuttavia,

sono rari i sistemi pratici per il recupero delle informazioni salvate su di essi

che non includano una componente centralizzata. In questo lavoro di tesi viene

presentato lo sviluppo di un’applicazione il cui scopo è quello di consentire agli

utenti di caricare immagini in un’architettura totalmente decentralizzata, grazie

ai Decentralized File Storage e alla successiva ricerca e recupero di tali oggetti

attraverso una Distributed Hash Table (DHT) in cui sono memorizzati i necessari

Content IDentifiers (CID).

L’obiettivo principale è stato quello di trovare una migliore allocazione delle im-

magini all’interno del DHT attraverso l’uso dell’International Standard Content

Code (ISCC), ovvero uno standard ISO che, attraverso funzioni hash content-

driven, locality-sensitive e similarity-preserving, assegna i CID IPFS delle im-

magini ai nodi del DHT in modo efficiente, per ridurre il più possibile i salti tra i

nodi e recuperare immagini coerenti con la query eseguita. Verranno, poi, analiz-

zati i risultati ottenuti dall’allocazione dei CID delle immagini nei nodi mettendo

a confronto ISCC e hash crittografico SHA-256, per verificare se ISCC rappresenti

meglio la somiglianza tra le immagini allocando le immagini simili in nodi vicini

tra loro.





Abstract

Decentralized systems have allowed users to share information without the pres-

ence of a centralized intermediary who possesses sovereignty over the data ex-

changed, security risks, and the possibility of bottlenecks. However, practical sys-

tems for retrieving the information saved on them that do not include a central-

ized component are rare. In this thesis work, the development of an application

is introduced whose purpose is to allow users to upload images to a totally de-

centralized architecture, thanks to Decentralized File Storage and the subsequent

search and retrieval of such objects through a Distributed Hash Table (DHT) in

which the necessary Content IDentifiers (CID) are stored.

The main aim was to find a better allocation of images within the DHT through

the use of the International Standard Content Code (ISCC), i.e., an ISO standard

that, through content-driven, locality-sensitive, and similarity-preserving hash

functions, assigns the IPFS CIDs of the images to the nodes of the DHT in an ef-

ficient way, to reduce as much as possible the hops between nodes and retrieve

images consistent with the query executed. The results obtained from allocating

image CIDs in nodes by comparing ISCC and SHA-256 cryptographic hash will

then be analyzed to see whether ISCC better represents the similarity between

images than the hash by allocating similar images in nodes close to each other.
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Chapter 1

Introduction

The digital transformation we are witnessing leads to a large amount of data

that needs to be stored and managed as a crucial factor for economies and societies

worldwide. One example is cloud platforms that allow users and companies to

save their data and access it at any time if they have an internet connection.

Peer-to-peer systems are increasingly gaining a foothold in technologies used

daily; think of the growing interest that cryptocurrencies, based on Distributed

Ledger Technologies (DLTs), have generated within global communities. The use

of decentralized systems, however, is not limited to cryptocurrencies. Such systems

can also be used for different purposes, such as file sharing.

This interest in distributed software is most likely because of all the benefits

they bring in terms of security, eliminating the single point of failure, censorship by

those who hold the centralized servers, data reliability, absence of bottleneck, and

the possibility given to the users of taking part of the network contributing with

their capacities.

Based on these assumptions, the purpose of this thesis work was to present a

fully decentralized architecture that would give users the ability to save their im-

ages into a Decentralized File Storage, in this case, IPFS, by being able to go out and

1



2 1. Introduction

perform queries so that they could search for those images on a hypercube-shaped

Distributed Hash Table that contains references to the objects stored with IPFS.

In order to make sure that better search performance was achieved on the re-

search, comparison tests were carried out to choose which methodology gave opti-

mal results in allocating images between the International Standard Content Code

(ISCC) and the SHA-256 cryptographic hash to see which one performed better in

allocating media objects within the DHT in terms of the minimum distance between

similar images, and maximum distance between different images.

This thesis is structured into six chapters: the second chapter will present a back-

ground to the technologies used along with an introduction to some topic-related

works addressed by researchers and not; the third chapter will show the architec-

ture adopted for the system; the fourth chapter will explain the design and method-

ologies adopted in devising the compare tests and the query performing method;

the fifth chapter will describe the implementation of the tests and queries intro-

duced in the third chapter; the sixth chapter will compare the results obtained from

the tests; and, in the end, the seventh chapter will express conclusion observations.



Chapter 2

State of the Art

This chapter is structured into two main sections. The first will introduce a

background of all the technologies used to accomplish the final results, and the

second will present some topic-related works of this thesis.

2.1 Background

2.1.1 Decentralized File Storage

This architecture is an alternative to classical client-server architectures, through

which the user, to access a resource on the Internet, provides a URL representing the

destination where the desired resource is located. The problem with client-server

architectures is that being centralized, they are vulnerable to cyber attacks, data

loss, and exploitation.

Here, Decentralized File Storage comes into play in which contents are not reach-

able based on where they are but based on what they are. Through InterPlan-

etay File System (IPFS), which is a DFS and a protocol thought for decentralized

architectures [6], it is possible to generate a unique key, called Content ID (CID)

3



4 2. State of the Art

which is a digest produced from a hash function applied to the file, and users can

retrieve the desired objects from the peer-to-peer network. The problem with this

architecture is that it is needed the possession of the CID to get a file saved in IPFS.

So there is a need for an additional layer that saves CIDs in a structure that

allows search for objects through queries. Such a layer is implemented through a

Distributed Hash Table.

2.1.2 Distributed Hash Table

Distributed Hash Tables are decentralized systems that offer the possibility of

exploiting the Hash Table data structure in a distributed manner, thus efficiently

allocating objects to keywords. In this case, keywords represent binary identifiers

by which nodes are recognized, and objects are the values contained in them.

Nodes, in addition to representing keys to which objects are assigned, and thus

saved, also contain a partial view of the network so that routing mechanisms can

be implemented to go from a starting node to the desired node.

The association between content and keywords, i.e., nodes, is computed using

a hash function that maps the content into a keyword consisting of a sequence of n

bits.

Underlying this architecture is the idea of distributing the workload over mul-

tiple nodes based on the IDs that identify them. The search for an object i will then

become the search for the node within the DHT that manages the subset of the space

of IDs containing i.

This type of infrastructure has been used for the implementation of many de-

centralized services, such as BitTorrent [7], DFS [8], and Content-Addressable Net-

works (CANs) [9].
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2.1.3 International Standard Content Code

The International Standard Content Code (ISCC) [1] is an ISO-approved stan-

dard [10] that, given an input file, gives the ability to create a corresponding code

that goes to identify the file itself.

As written in the project’s vision, such standard was created to identify media

files within decentralized structures, such as blockchains.

The ISCC code of a file is generated from data contained in the file itself, such

as the metadata, the contents, and the raw data of the file. This mechanism allows

for not having to assign a code or incorporate it into it manually; the file is the

resource for generating its unique identification code based on the data from which

it is formed.

Generating the code is a series of content-driven, locality-sensitive, and similarity-

preserving hash functions that, unlike cryptographic hash functions, go into pre-

serving similarity between data so that two similar contents do not have totally

different codes.

ISCC Features

ISCC consists of four main components:

• Metadata Similarity, Meta-Code;

• Content Similarity, Content-Code;

• Data Similarity, Data-Code;

• Data Integrity, Instance-Code.

These components can be considered separately, all together, or used to generate

a code represented by a digest derived from the four components.
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Figure 2.1: How ISCC is composed [1]

In figure 2.1, an example of ISCC code can be seen.

The ISCC code is a digest derived from the four separately computed codes. It

consists of 52 characters, totaling 36 bytes (288 bits). An overview of how an ISCC

code is constructed based on the data from which the file consists is shown in figure

2.2.

Each separate component consists of 72 bits, 8 bits for the header, and 64 bits for

the body and has as its return value a string encoded in base58-iscc [11]. The header

is intended to recognize the type of code component and, in the case of Content

Similarity Code, to indicate the file type from four main choices: text, audio, video,

and image. Figure 2.3 explains how the header bits are assigned for each component

based on the component itself and the file type considered for the Content Similarity

Code.
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Figure 2.2: Overview of how an ISCC code is built [2]

Meta-Code

This code is generated from the file metadata passed as input to the ISCC algo-

rithm. It takes advantage of the metadata in the file, and the ISCC-SDK [12] also

gives the ability to add metadata, such as the creator’s name, a description of the

file, and many other contents.

The algorithm for generating the Metadata Similarity Code takes two elements

as input:

• title: the file title;

• extra: a file description that gives the option of generating a unique code,
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Figure 2.3: Assignment of bits in the header [3]

empty by default. In addition, other metadata can be added as Data-URL.

After a series of steps shown in this link [13], the code is generated, and the hash

function to compute the digest on which base58-iscc encoding will then be applied

is xxHash64 [14].

Content-Code

The second part of the header represents the file type (text, image, video, audio),

as shown in figure 2.3. The generation of this code depends on the type of file being

considered, and the various steps for generating the code based on the file type are

shown in this link [15].



2.1 Background 9

This code is necessary when, for example, the content of two files is the same,

but the format is different. This specific case can be seen in image 2.4.

Figure 2.4: Content-Code features [4]

PCF stands for Partial Content Flagging and represents the last bit of the header

for Content-Code. This bit means that the entire file should be considered for code

generation if the bit is marked with 0 or only a specified part indicated by the user

if the bit is marked with 1.

Data-Code

The Data-Code represents the code that encodes the similarity of the data con-

tained in the file, taking advantage of the raw data without having to figure out

what type of file it is. There is no need to interpret the type to determine what ac-

tions to take based on it, as with the Content-Code. This approach allows working

on any file without having to process it first for the algorithm to work.
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The raw data in the file is divided into chunks on which a hash will be com-

puted. After that, a sample will be taken on which the MinHash function will be

applied, and the base58-iscc encoded value will be returned as the Data-Code of the

file.

The steps performed by this algorithm can be observed in this link [16].

Instance-Code

Instance-Code is used to prove the integrity of the work passed as input to the

algorithm. Raw file data are split into 64 KB chunks, after which a Merkle tree will

be constructed and the hash contained in the root node encoded in base58-iscc as

the Instance-Code will be taken.

The steps for generating this code can be found at this link [17].

2.2 Related works

The growing interest in distributed systems leads academics and developers to

search for new technologies that would give the ability to exploit decentralization

for both data storage and data management.

The Graph is a platform created to provide a Decentralized Query Protocol [18],

i.e., an architecture built on top of Ethereum and IPFS, which allows users to per-

form queries on data stored on these two technologies. Their peer-to-peer network

leverages a Service Addressable Network to locate nodes that can fulfill the query.

The organization of the network is similar to a Decentralized Autonomous Organi-

zation (DAO). However, the method used to store indexes does not use a DHT.

Concerning IPFS, on the other hand, to make sure that it can overcome the limi-

tations regarding file searching due to its storage mechanism, a search engine called

ipfs-search [19] was implemented. The problem with this solution is that it is not
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based on a decentralized architecture. To make sure that such a solution was de-

centralized, Siva [20] was proposed, which leverages an inverted index to search

for content saved on IPFS but concretely adds no improvement in terms of key-

word storage optimization.

A more inherent work to the topics discussed in this paper is found in [21], in

which the authors implemented a Road Hazard Detection search system for self-

driving vehicles. The architecture is based on IOTA DLT to save the locations of

possible road hazards and search for those locations using a hypercube-shaped

DHT in which the ID of the transitions containing the information are stored. In

[5], the focus is more on organizing a Decentralized Autonomous Organization for

incentives users via a reward-based mechanism to keep alive their nodes, but with

the same architecture as in the previously mentioned article using a DFS instead of a

DLT to store the contents referenced by the CIDs saved in the DHT nodes. A similar

approach to the topic addressed by this thesis can be found in [22]. The researchers

developed a DHT called Hamming DHT, based on Chord architecture [23], that

stores contents based on their cosine similarity, given that contents are represented

as vectors, to reduce the hops between nodes when a query is performed.





Chapter 3

Architecture

Figure 3.1: Project architecture [5]

The architecture on which the project was built is based on two main layers.

The first, which constitutes the base layer, consists of a Distributed File Storage,

in this case, IPFS, which is responsible for saving and sharing images, while the

second consists of a hypercube-shaped Distributed Hash Table for storing the CIDs

13



14 3. Architecture

associated with the images.

These two technologies were chosen in order to make the architecture com-

pletely decentralized. This way, avoiding all the problems related to the centralized

system described before is possible.

In figure 3.1, taken from the article [5], it is possible to see the system architecture

in which IPFS implements the DFS network as the first layer, where files are stored

and shared between nodes, and the keyword associated to the files are the IDs of

the DHT peers, in the second layer.

Each keyword that identifies a specific node within the DHT is composed of r

bits, so, having the form of a hypercube, the network will always have the number

of logical nodes equal to 2r. However, there may be a different number of physical

nodes than logical nodes; for example, if each logical is implemented from two

physical nodes or vice versa, two logical nodes refer to only one physical node.

Regarding the routing mechanism, the term hop is introduced. This word rep-

resents the steps from one peer to another to reach the desired resource. Finding

ourselves in hypercube-shaped DHT hops represents the Hamming distance be-

tween the bit-string of the starting node to the bit-string of the finishing node since

each node has as neighbors those who differ from its ID by one bit. If the shortest

path between two nodes is calculated, the number of hops represents the Hamming

distance between their IDs.

Since the purpose of this research was to look for a more efficient way of map-

ping IPFS CIDs within a Distributed Hash Table to make their discovery more effi-

cient, the hypercube form was chosen because of its feature of reducing the number

of hops between slightly different nodes, thus allocating similar multimedia files

within nodes that are as close as possible to each other.



Chapter 4

Methodology

This chapter will show how tests were performed to choose which candidate

between ISCC and cryptographic hash is better in allocating images into the DHT

nodes. The aim is that similar images would remain close together while different

images stay far apart.

4.1 Images dataset

The test dataset chosen to see if ISCC is a more appropriate choice for allocating

multimedia files into a hypercube-shaped DHT is composed of 30 folders, that from

now on, will be called image classes, each containing 15 photos of the same subject,

like a monument or a painting. Table 4.1 are reported all the image classes used as

datasets and the relative queries executed on the search engine.

These images were downloaded from bing.com through a Python script where

a dictionary stores 30 URLs representing the image search for every subject. The

script iterates over the URLs and, for each one, create a folder named as the key

that store the URL and downloads the first 15 images resulting from the search.

15



16 4. Methodology

Table 4.1: Image Classes Names & Bing Query

Image Class Bing Query

altare della patria altare della patria

arco pace arco della pace milano

arco trionfo arco di trionfo

arena verona arena di verona

basilica santa croce basilica di santa croce firenze

basilica san marco basilica san marco

cinque terre cinque terre

colosseo colosseo

due torri due torri bologna

duomo milano duomo di milano

fontana trevi fontana di trevi

hamburger hamburger

il bacio il bacio klimt

lavorare lavorare lavorare lavorare lavorare lavorare preferisco il rumore del mare

monalisa monalisa

nettuno nettuno bologna

notte stellata vangog notte stellata vangog

obelisco wash dc monumento a washington

pantheon pantheon

piazza san marco piazza san marco

pietà mic pietà michelangelo

ponte vecchio ponte vecchio

reggia caserta reggia di caserta

san luca san luca bologna
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san petronio san petronio bologna

statua libertà statua della libertà

taj mahal taj mahal

torre pisa torre di pisa

ultima cena ultima cena leonardo

urlo munch urlo di munch

4.2 Images ID Generation

The reason ISCC was chosen to test if it is possible to obtain a more efficient

allocation of the images on the hypercube DHT compared to cryptographic hash is

to ensure that the hops required to reach the desired objects are as few as possible.

Cryptographic hashing was chosen as the comparison method to observe whether

ISCC would perform better than a solution that generates node IDs in which to save

image references more randomly.

Two main techniques were adopted regarding the generation of IDs for each

image. The first concerns the generation of IDs, for both hash and ISCC, by going to

choose an r, which represents the number of bits with which a node ID is composed,

and a g, that represents the number of characters from which the chunks into which

the code, hash, and ISCC, will be divided will be formed, which will then be used

to go to calculate the position of the bits to turn on within the bit-string, initially set

with all 0.

The second is similar, and instead of generating a single bit-string on which to

go to compute the bit positions to be turned on, many will be created, 16 to be

precise, one for each character of an ISCC code, of 16 bits each, which will later be
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concatenated with each other to go to form a 256 bit-string representing the node

ID in which to save the image reference.

4.2.1 Non-concatenated bit-string generation

Figure 4.1: Example of ID generation from a Meta-Code

In this section, we will go into a deeper analysis of how the tests were designed

about generation and comparison for the first technique, that is, the one that does

not use concatenation between multiple bit-strings for the generation of the final

node ID.

Regarding ISCC code, only Meta-Code and Content-Code were used, first taken

individually to see how they behave in ID assignment. Then they were used to-
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gether, calculating the OR between the bit-strings generated by both to obtain a

final bit-string. Instead, the SHA256 function of the images was computed for the

hash.

The method for generating the bit-string corresponding to the ID of a node

within the hypercube will be explained below.

As was briefly introduced earlier, two main parameters will be passed:

• r: represents the number of bits that identify a node within the DHT.

• g: represents the number of characters in each chunk into which the code

generated from the image will be divided. Then, from each chunk will be

computed, the corresponding hexadecimal value which module with r will

return the position within the bit-string, initially set with all 0, in which to go

to insert 1.

In figure 4.1, it is possible to see a flowchart of how an ID is generated from the

Meta-Code that it is given as input; in this case, r was set to 8 and g to 4.

For Content-Code, the same procedure is applied. The algorithm divides chunks

of the generated code, transforms them into hexadecimal values, and computes the

hex module r to find the bit-string position that must be set to 1.

Once both IDs generated from a single image are obtained, the OR between

the Meta-Code’s bit-string and the Content-Code’s bit-string will be computed to

obtain an additional ID representing the node chosen by the union of the two codes.

An example of how the final bit-string between Meta-Code and Content-Code

is obtained can be seen below:



20 4. Methodology

Meta− Code : AAA5C73C3GZDHDHD → [0, 0, 0, 1, 1, 1, 0, 0]

OR

Content− Code : EEA2T2CQV F6ZR7BU → [0, 1, 1, 0, 0, 1, 0, 0]

↓

[0, 1, 1, 1, 1, 1, 0, 0]

Given that hash generated code has four times the character that ISCC contains,

when we selected a specific g for ISCC, the g that was assigned to the algorithm for

generating the bit-string associated with the hash code is four times bigger than the

g assigned to the ISCC node generation ID.

The selected r and g are:

• r: 8, 16, 32, 64, 128, 256, 512, 1024; for both ISCC and hash;

• g: 2 for ISCC and 8 for cryptographic hash, 4 for ISCC and 16 for cryptographic

hash.

Running the tests in this way, we will have for each r two subsets: the first

performs the generation of the node IDs to which to assign images considering the

first two g, and the second considers the other two g.

Each run will save the results in a dataset contained in folders within a path rep-

resenting the r, and g used to generate the IDs of those specific images. For example,

the following path will contain all the CSVs representing the image ID generation

algorithm for ISCC having r = 8 and g = 2 as parameters.: ./id or generated meta/

results/iscc-2 hash-8/csvs/r-8/g-2.

These datasets, a total of 30 for each combination of r and g, one for each class of

images, contain information about the Meta-Codes and Content-Codes generated

by the images belonging to that specific class, with the corresponding node IDs
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calculated based on the algorithm explained above, will then be used to perform

the efficiency tests of ID generation by ISCC and hashes that will be explained later.

A dataset for ISCC has the following column:

• Img-Name: the name of the image in the class;

• Meta: the Meta-Code generated from the image;

• R-Meta: the corresponding r-bit string generated from the Meta-Code;

• Content: the Content-Code generated from the image;

• R-Content: the corresponding r-bit string generated from the Content-Code;

• Final-R: the r-bit string obtained by calculating the OR operator between R-

Meta and R-Content.

Instead, a dataset for the IDs generated by the hash has the following columns:

• Img-Name: as above, the name of the image of the class;

• SHA256: the output of a SHA256 function of the image;

• Final-R: the r-bit string obtained from the SHA256.

4.2.2 Concatenated bit-string generation

Regarding the generation of IDs through concatenating the bit-strings, turning

on the bits within the r-bit string remains almost identical to that without concate-

nation.

This technique differs from the one explained before because multiple r’s were

not tested to see which performed better. A prefixed r of 16 was chosen for each bit-

string to ensure that, having ISCC 16 characters, each character could fall back on a
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different bit. This process would enable a similarity to be as close to the generated

code within the ID as possible. Also, no multiple g’s were tested since we were

interested in taking one character at a time, from which we then went to see which

bit the algorithm turned on.

Figure 4.2: Example of concatenated bit-string generation from Meta-Code

So, going into more detail, r was set to 16 bits and g to 1 for ISCC, while for the

hash, g was set to 4 to get 16 chunks.

Then, after setting these two parameters, the process is the same. Take the gen-
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erated code from the image, ISCC, and hash; divide into chunks formed by g char-

acters; for every chunk, calculate its consideration hexadecimal value and, in the

end, calculate the module between the hexadecimal value and r, that is 16.

Once this procedure has been performed for each character of ISCC or every

four characters of the hash, all the individual 16-bit bit-strings will be concatenated

into one to form a 256-bit-string with 16 bits turned on. In the diagram 4.2, it is

possible to see this mechanism for generating the bit-string starting from a Meta-

Code having r and g set to 4.

As with the method that does not use concatenation, the Meta-Code and Content-

Code were evaluated individually and joined to form a single node identifier using

the OR operator between Meta-Code and Content-Code bit-strings, as in the exam-

ple below.

Meta− Code : AAA5C73C3EJLHHHT → [0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0]

OR

Content− Code : EEA2T2CQV F6ZR7BU → [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0]

↓

[0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0]

Also, for this technique, all information computed by the algorithm collated to

the images are saved to datasets placed in paths formed by folders representing the

methodology used, for example, id concat generated final/results/iscc/

csvs.

As with the previous technique, a dataset was created for each class of images,

containing information about the codes generated by the algorithm using bit-string

concatenation. The structure of the datasets is the same as the non-concatenated

method.
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4.3 Internal Hamming distance

Once all the datasets diversified by the ID generation method and the r and g

parameters have been obtained, we can proceed with test generation to see who

performs better in allocating references to images within a hypercube-shaped Dis-

tributed Hash Table.

The first test chosen is to check which ISCC and cryptographic hash performs

better in how far apart, on average, the images within the same class are.

The hamming distance between the bit-strings of the images in each dataset was

calculated to measure the distance between the IDs of images belonging to the same

class to figure out how many hops, on average, are needed to reach the images of a

class starting from a node that contains one or more of them.

The results of the distances will be saved in a CSV representing a distance matrix

between the classes; thus, the rows and columns of the matrix will be the same,

that is, the names of the images belonging to that specific class. Once a matrix of

distances is obtained, an average of the lower diagonal will be calculated to assign

that specific class a mean distance separating images from each other within the

hypercube. The standard deviation was also reported to verify that outliers do not

affect the mean.

Once all the distance matrices have been created for each class whose IDs have

been generated by a specific method and parameters, for example, using only Content-

Code and having r=16 and g=2 for ISCC as parameters and g=8 for the hash, two

JSON files will be created, one for ISCC and one for cryptographic hash, in which

the average hamming distances for each class will be written with their standard

deviations.

Through these averages, we can compare the generation of IDs from the two

codes based on the magnitude of the hamming distance, i.e., the lower the average
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internal distance, the better the allocation of images within the DHT, again taking

into account the standard deviation.

4.4 Distance between image classes

However, looking at what technique performs best when placing references to

images within the same class is not enough. To understand which methodology is

more efficient, one must also look at how the classes behave with each other, that

is, whether, within the hypercube, different classes are allocated at nodes far apart.

The method chosen to calculate the distance between classes is to assign each

class a centroid and then measure the hamming distance between them. The cen-

troids were calculated as the median node ID among the nodes to which images

of a class were assigned. From bit-strings, the IDs were transformed into numbers,

these numbers were inserted within an array sorted in ascending order, and the

node at the center of the array, i.e., the median, was chosen as the centroid of the

class.

Then, for each method combination used for ID and parameter generation, a

nested JSON is created, where the nested represents the parameter combination,

where its centroid and the hamming distance between that centroid and the cen-

troids of the other 29 classes are saved for each image class.

These measurements will be used for the final part of the tests in which we are

going to combine into a single metric the average internal distance from the distance

to the other classes to check which combination performs best by going to see which

maximizes the distance to the other classes while minimizing the distance between

the node IDs assigned to the images of the same class.
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4.5 Efficiency metric

The last measure used to test which combination of ISCC and hash performed

best was a metric designed to test which set of parameters and id generation tech-

nique went to maximize the distance between classes while minimizing the internal

distance between images belonging to the same class.

In a nutshell, an attempt was made to combine the two sections explained above

into a single metric that would allow evaluating the set of factors and not the factors

individually.

The main difference in devising this metric is that concerning internal distance,

the average of distances between classes is not taken, but the distance between it

and the centroid is calculated for each image belonging to the class; of course, not

taking the image representing the centroid.

The pseudocode that leads to obtaining the metric is given in the algorithm 1.

Explained in words, the metric works like this: first, an empty array called re-

sults is instantiated, after which a for loop is initialized that cycles over all the image

classes and two arrays are created for each class: the first containing all the ham-

ming distances between the centroid of class c and the centroids of the other classes,

and the second to save all the hamming distances between the centroid class c and

the images belonging to c.

After both arrays have been created, the average of each is calculated, and the

difference between them is added to the results array.

Finally, the metric is the result obtained by averaging the array results. Of

course, the higher this result is, the more it stands to signify that the methodol-

ogy used to generate the node id and the configuration of the r and g parameters is

best.

The metrics are calculated for the same combinations of the parameters for both
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Algorithm 1 Efficiency metric

results array ← []

for each class c do

distance between classes← []

for each class j != c do

distance between classes.append(hamming distance(centroid(c), centroid(j)))

end for

internal distance← []

for each image k != centroid(c) do

internal distance.append(hamming distance(centroid(c), k))

end for

results array.append(avg(distance between classes)− avg(internal distance))

end for

return abs(avg(results array))

the node generation that occurred through ISCC and the cryptographic hash, after

which subtraction is performed between the metrics obtained from ISCC and the

metrics obtained from the hash in absolute value, and the more significant this met-

ric is, the better ISCC proved to be for that parameter configuration; the smaller it

is, the worse it proved to be compared to the hash.

The results of the metrics for generating the IDs will then be saved in a nested

JSON, where the nested represents the combination of methodology and parame-

ters used to achieve that metric, and within the object will also be the value of the

comparison between ISCC and hash. Finally, another JSON will be created into

which the maximum and minimum results between the comparisons will be en-

tered so that we can then go and see whether the minimum is greater than the
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maximum1, so the hash performed better than ISCC, or whether the maximum is

greater than the minimum2, which stands for ISCC’s more remarkable ability to

represent images within the hypercube.

4.6 Query testing

After sifting through all the types of tests and seeing which combination per-

forms best, a testing system will be structured in such a way that an image not

belonging to any of the classes on which the tests were performed but depicts the

same subject as one of them, will be chosen to generate an ID from which perform a

search on the hypercube and show which images will be returned from that search.

The following were chosen as r-values for realizing DHT: 8, 12, 16. In this way,

an attempt was made to compare how different sizes of the hypercube representing

an actual situation behaved, considering that with r equal to 16, there are more than

60 thousand logic nodes.

As for g, however, it will be shown in the results phase since it was chosen based

on performance. Of course, the technique that does not involve concatenation was

chosen since an r equal to 256 bits has too many nodes.

To make such a simulation as truthful as possible, a JSON called hypercube.

json will be created, within which nodes will be represented as keys of pairs, and

values will be lists of CIDs, i.e., hash references to images saved on IPFS.

To implement the IPFS node through which the images were added to the net-

work, an IPFS container on Docker was used, to which ports were opened so that it

could be reached and images could be added to best simulate an actual architecture.

The implementation of the hypercube and the search using the methods that we

1Looking at the value as absolute value
2Same as the previous note
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are going to describe in a moment was accomplished for both the generation of the

node IDs to be associated with the images via ISCC and hash so that we can go and

compare which objects result from the search, and how many of them match the

images we are looking for along with the hops performed to visit the nodes that

returned us the objects.

Two types of research will be carried out and are inspired by the article [21]:

• Pin-search: the mechanism of this search method is identical to the previously

mentioned article. Starting from a node, which in this case is the node with

all bits set to 0, we want to reach the node generated by the image, which can

contain CIDs of similar images. The shortest path is calculated, and objects

associated with that node are returned together with the hops to reach it;

• Superset-search: while for the previous method, the mechanism is the same as

the article from which it was inspired, it is slightly different for this algorithm.

In the article, a Depth First Search is applied to go for objects that can be

described by keyword sets that include K, where K represents the ID of the

node generated by the image with which the query is being accomplished.

Instead, the implementation here involves a Breadth First Search, going to

check all the neighbors of the node generated by the query, then the neighbors

of the neighbors, and so on. This choice was made since it was noted that the

node IDs assigned to the images belonging to the same class might not belong

to the same set of keys.

Finally, the results of the three case histories will be added into a JSON for eval-

uation that will take place in the Results chapter.
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Implementation

The implementation of the tests explained earlier in the Methodology chapter

was structured as follows. Six folders were created, three with the prefix

id or generated and three with the prefix id concat generated.

Folders with the prefix id or generated go to represent the scripts and their

results using the generation of the ID of the nodes to which the images are to be as-

signed without concatenating the bit-strings generated by the individual characters,

as explained earlier. In contrast, folders with the prefix id concat generated

contain the files, scripts, and results of the methodology using concatenation be-

tween bit-strings.

For each of the two types of generation, there are three folders since the Meta-

Code was tested individually so that the prefix will end with meta, the Content-

Code individually, so the prefix will end with content, and finally, the last folder

representing the conjunction of the two, that terminates with the word final,

reached by calculating the OR operator between the two.

The programming language chosen for writing the code with which to go about

running the tests is Python. The libraries used to achieve the results are varied.

The iscc sdk library [12], as presented in the methodology chapter in the ISCC

31
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section, is a library implemented by the ISCC Foundation to enable the generation

and management of ISCC codes.

Other main libraries used are:

• pandas: for the management and creation of CSV files used to save the node

IDs assigned to images and the matrices of hamming distances between im-

ages within classes;

• ipfshttpclient: for connecting to the IPFS node instantiated with Docker

and managing objects, such as: adding and requesting images;

• openlocationcode: in such a way as to transform geographic coordinates

into the Open Location Code format [24], to identify an area and not a precise

point at which the image was taken;

• networkx: through the use of this library, a hypercube-shaped graph was

created and used based on the number of nodes chosen for query testing in

order to count the number of hops needed;

• matplotlib: for displaying measurements and other graph-like elements.

Some libraries already present in Python were also used, for example, os for

using methods with which to access the files needed by the algorithms and json

for creating and managing JSON files.

All the code and results are available on this link [25]

5.1 Non-concatenated bit-string generation

As introduced at the beginning of the chapter, the tests with their respective

results are located within the following three folders:
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• id or generated meta;

• id or generated content;

• id or generated final;

Each folder has two main folders inside:

• script: contains all Python scripts, respectively divided into two folders, one

for the scripts that generate the results for ISCC and one for the hash scripts,

for producing the results from that specific methodology represented by the

folder name;

• results: where all results are divided into directories based on the script that

generated them.

5.1.1 ID generation from Meta-Code

Within the path id or generated meta/script/iscc, we find all the Python

files related to the generation of the results from using Meta-Code for generating

node IDs to be assigned to class images.

The file called IdGen.py is responsible for generating IDs using ISCC’s Meta-

Code and works as follows.

Inside we find four methods:

• calcISCC(path, title, metas): this method takes as parameters the

path to the image from which we want to generate the relevant ISCC codes, a

title we want to assign to the image, and additional metadata in the form of a

Python dictionary, metas, which will be encoded within the Meta-Code. Re-

turns the Meta-Code and Content-Code related to the image passed as input;
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• calc node id(iscc meta, iscc content, r, g): parameters are the

Meta-Code and Content-Code generated by the previous method, r being the

number of bits that go to represent the ID of a node, and g, the number of

characters in a chunk from which to compute the positions of the bits to be

turned on within an ID initially set with all bits to 0. It returns three bit-

strings in the form of a list, one representing the bit-string generated by the

Meta-Code, one generated by the Content-Code, and a final bit-string, which

in this case is assigned equal to the bit-string generated by the Meta-Code, as

we will see later;

• create csv(rootdir, r, csv folder, g): deals with creating the CSV

files to save the generated ISCC codes with their respective IDs calculated by

the previous method, broken down by imaged class. rootdir represents the

folder of photographs, r the number of bits in an ID, csv folder the directory

where to save the CSVs created, and g the number of characters in a chunk

from which to go to compute the bit to be turned on;

• code hamming distance(csvs, hamming csvs): creates the CSV files

in which the hamming distances in the form of a distance matrix will be saved

for the images within the classes. The two input parameters are two paths to

two folders, the first representing the directory where to fetch the CSVs with

the IDs inside that the images for each class have been associated with, and

the second being the path of where to go to save the CSVs generated by the

method.

calcISCC

1 def calcISCC( path, title, metas):

2
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3 meta_serialized = jcs.canonicalize(metas)

4

5 du_obj = DataURL.from_data(’application/json’,base64_encode=True,

data=meta_serialized)

6

7 ic_meta = idk.IsccMeta(name=title,description="description",meta=

du_obj.url)

8 iscc_meta = idk.embed_metadata(path,ic_meta)

9

10 iscc_meta = idk.code_meta(iscc_meta).dict()

11

12 iscc_content = idk.code_content(path).dict()

13

14 return iscc_meta[’iscc’][5:], iscc_content[’iscc’][5:]

It is possible to import several functions necessary for the canonicalization of

JSON data through the JCS library. It is crucial because, as written in the documen-

tation of JSON Canonicalization (JCS) [26], it is necessary that during serialization,

transport, or parsing, data does not change. The application of JCS is essential be-

cause metadata must be in the form of DataURL to be embedded, as it is possible

to see on line 5 of the code.

After that, an IsccMeta object is created to which the chosen title for the image,

a standard description, and additional metadata are assigned.

With the embed metadata() method, iscc sdk gives the ability to assign meta-

data to the image passed as a parameter of the path variable and finally generate

the Meta-Code code via the code meta method that takes the return variable on

line 8 as a parameter.

For Content-Code, on the other hand, pass to the code content method the

path to the image from which you want to compute the relevant code. At the end
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of the process of generating the desired components of ISCC, the two codes are

returned, and being in the form of a dictionary, the value associated with the key

’iscc’ is taken, discarding the first five characters since the string is in the form

ISCC:AAA5K73C3EJLHHHT.

calc node id

Since the code for this method is quite long, it will be divided and explained in

chunks.

This first piece of code depicts the method there as the two ISCC codes were

divided into chunks based on the g parameter.

First, it is checked that g is between 1 and 15, after which a loop from 1 to the

length of one of the two ISCC codes, i.e., 16, takes care of creating temporary strings

to which a character of the code will be appended at each step. If the number of the

loop we are in is divisible by g, then the temporary string will be added to an array

representing the chunks of the code, and a new string will be created.

The steps explained in the previous paragraph are done for Meta-Code and

Content-Code separately but within the same loop since both have a length of 16

characters.

1 def calc_node_id(iscc_meta, iscc_content, r, g):

2

3 if g > 15:

4 g = 15

5 elif g < 1:

6 g = 1

7

8 iscc_decomposed_meta = []

9 iscc_decomposed_content = []

10 tmp_str_meta = ""

11 tmp_str_content = ""
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12

13 for i in range(0,len(iscc_meta)): # meta and content have the same

length

14

15 tmp_str_meta += iscc_meta[i]

16 tmp_str_content += iscc_content[i]

17

18 if (i+1) % g == 0:

19 iscc_decomposed_meta.append(tmp_str_meta)

20 iscc_decomposed_content.append(tmp_str_content)

21 tmp_str_meta = ""

22 tmp_str_content = ""

23

24 if g % 2 != 0 and i == len(iscc_meta)-1:

25 iscc_decomposed_meta[len(iscc_decomposed_meta)-1] +=

iscc_meta[i]

26 iscc_decomposed_content[len(iscc_decomposed_content)-1] +=

iscc_content[i]

The following code shows how the node to which the image given as input to

the method is assigned is calculated.

The following steps are accomplished in a for loop executed for the previously

calculated number of chunks into which the two codes have been divided.

• for the i-th chunk, the corresponding hexadecimal value is calculated using

the hexlify method;

• after that, this hex value is transformed into an integer, passing the value 16

as the basis for casting;

• finally the modulus between the integer value and r, i.e., the number of bits

in an ID, is computed;
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• this result represents the position of the bit to be turned on and is added to

the corresponding list, representing the Meta-Code or Content-Code.

Once the two lists containing the bit positions to be set to 1 have been con-

structed, two for loops, one for Meta-Code, and one for Content-Code, will go to

turn on the bits at the corresponding positions.

The variable final r, which stands for the ID to which that image is to be as-

signed, is given the value corresponding to the bit-string generated by the Meta-

Code, and all three IDs are returned by the method.

1 r_bit_posisitons_meta = []

2 r_bit_posisitons_content = []

3

4 for i in range(0, len(iscc_decomposed_meta)): # meta and content have

the same length

5

6 deco_hex_meta = hexlify(iscc_decomposed_meta[i].encode()).decode

()

7 deco_hex_content = hexlify(iscc_decomposed_content[i].encode()).

decode()

8 val_int_meta = int(deco_hex_meta,16)

9 val_int_content = int(deco_hex_content,16)

10 mod_meta = val_int_meta % r

11 mod_content = val_int_content % r

12 r_bit_posisitons_meta.append(mod_meta)

13 r_bit_posisitons_content.append(mod_content)

14

15 print(r_bit_posisitons_content)

16 print(r_bit_posisitons_meta)

17 r_string_meta = [0 for i in range(0,r)]

18 r_string_content = [0 for i in range(0,r)]

19

20 for el in r_bit_posisitons_meta:
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21 r_string_meta[el] = 1

22

23 for el in r_bit_posisitons_content:

24 r_string_content[el] = 1

25

26 final_r = r_string_meta

27

28 return r_string_meta, r_string_content, final_r

create csv

This method takes all the folders within the directory containing the images and

creates a CSV for each folder, i.e., image class, which reports all the images for that

class with their generated codes and IDs.

An Open Location Code is generated for each image, via the appropriate library,

from geographic coordinates taken randomly. Of course, images belonging to the

same class have identical locations.

After that, the relevant Meta-Code and Content-Code of the image are gener-

ated, and then compute the node ID assigned to that picture using the methods

described above.

Once all the necessary informations are obtained, a list is created to which they

are added, and this list is appended to the CSV. Once all the images belonging to

a class have been processed, the generated CSV will be saved in the results folder

based on the g parameter used to calculate the IDs.

1 def create_csv(self, rootdir, r, csv_folder, g):

2

3 for root, subFolders, files in os.walk(rootdir):

4

5 for dir in subFolders:
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6

7 i = 0

8 dir_path = os.path.join(rootdir, dir)

9 dir_df = pd.DataFrame(columns = [’Img-Name’,’Meta’,’R-Meta’,’

Content’, ’R-Content’, ’Final-R’])

10

11 latlong = {

12 "lat": round(random.uniform(-190,190), 6),

13 "long": round(random.uniform(-190,190), 6),

14 }

15

16 _olc = olc.encode(latlong[’lat’], latlong[’long’], 8)

17 meta = {

18 "@type":"Places",

19 "olc": _olc

20 }

21

22 for file in os.listdir(dir_path):

23

24 file_path = os.path.join(dir_path, file)

25 file_title = "Img " + str(file)

26

27 iscc_meta, iscc_content = self.calcISCC(file_path,

file_title,meta)

28 r_string_m, r_string_c, final_r = self.calc_node_id(

iscc_meta, iscc_content, r, g)

29

30 file_codes = [str(file),iscc_meta,str(r_string_m),

iscc_content,str(r_string_c),str(final_r)]

31

32 dir_df.loc[i] = file_codes

33 i += 1

34
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35 dir_df.to_csv(csv_folder+"/"+str(dir)+".csv", index=False)

code hamming distance

This method aims to create a distance matrix reporting the distance between

nodes saved in the CSVs created with the method above.

A CSV is read at a time via a for loop to accomplish this calculation. After that,

as many distance matrices as there are columns in the CSV are created, leaving out

the column representing the image names. For example, if the columns are: Meta,

R-Meta, Content, R-Conten, and Final-R, five distance matrices will be created for

each values contained within the column, separated by a line called Type within

the CSV.

1 def code_hamming_distance(self, csvs, hamming_csvs):

2

3 for file in os.listdir(csvs):

4

5 if "hamming" not in str(file):

6

7 hamming_file = str(file)[:-4] + "_hamming.csv"

8

9 df_codes = pd.read_csv(os.path.join(csvs, file))

10 idx_h_df = list(df_codes[’Img-Name’])

11 idx_h_df.insert(0,’Type’)

12 cols = idx_h_df[1:]

13 df_codes = df_codes.set_index(’Img-Name’)

14

15 concat_df = pd.DataFrame()

16

17 for col in df_codes.keys():

18
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19 sep = [col for i in range(0,len(cols))]

20

21 h_df = pd.DataFrame(columns=cols, index=idx_h_df)

22 h_df.loc[’Type’] = sep

23

24 for idx, row in df_codes.iterrows():

25 img = idx

26 str1 = str(df_codes.loc[img,col]).replace(’ ’,’’)

.replace(’[’,’’).replace(’]’,’’).replace(’,’,’’)

27

28 for idx, row in df_codes.iterrows():

29

30 str2=str(df_codes.loc[idx,col]).replace(’ ’,’

’).replace(’[’,’’).replace(’]’,’’).replace(’,’,’’)

31

32 h_dist = hamming(list(str1),list(str2)) * len

(list(str1))

33 h_df.loc[img,idx] = round(h_dist)

34

35 concat_df = pd.concat([concat_df,h_df], ignore_index=

False)

36

37 concat_df.to_csv(os.path.join(hamming_csvs, hamming_file))

5.1.2 ID generation from Content-Code

The script implementation mechanism regarding generating results resulting

only from assigning images to nodes via Content-Code is purportedly identical to

the previous section’s.

The only line that changes is the assignment of the final r a to the ID generated

by the Meta-Code. In this case, the variable is assigned to the node ID generated
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by the Content-Code, as shown in the code block below. As for the other three

methods, they remain unchanged.

1 final_r = r_string_content

As with Meta-Code, scripts and results are saved in the id or generated content

folder.

5.1.3 ID generation from Meta-Code & Content-Code

The implementation remains the same for the methodology that uses both codes

to generate the ID assigned to the images. However, a third bit-string is created in

which for each i-th position of the string, the result between the OR of the bit at the i-

th position of the bit-string generated by the Meta-Code and the i-th position of the

bit-string generated by the Content-Code is saved, as can be seen in the following

piece of code.

1 final_r = [0 for i in range(0,r)]

2

3 for i in range(0,r):

4 bool_m = bool(r_string_meta[i])

5 bool_c = bool(r_string_content[i])

6 if bool_c or bool_m:

7 final_r[i] = 1

All scripts and the results derived from them for this methodology are saved in

the folder id or generated final.
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5.2 Concatenated bit-string generation

As per the design, in addition to the generation of node IDs to be assigned to

images described above, the type that exploits the concatenation of bit-strings gen-

erated by the characters of ISCC codes taken individually and then concatenated

can be found in the following three folders:

• id concat generated meta;

• id concat generated content;

• id concat generated final;

As with the implementations described in the previous section, within these

three folders, we find two sub-folders called scripts and results that function in the

same way as the sub-folders within the directories concerning implementations that

do not use concatenation between bit-strings.

Scripts for generating IDs using ISCC codes are found in the path

folder name/script/iscc, where folder name must be replaced with each of

the folder names in the bulleted list.

The following sections will explain only how bit-string concatenation was im-

plemented since the other three methods remained unchanged.

5.2.1 ID generation from Meta-Code

The bit-strings are created within the calc node idmethod. The initial part re-

mains unchanged from the methodology without concatenation, and then for each

character is computed its hexadecimal number, run the module with r, and a 16-bit

bit-string is created in which the bit with the position resulting from the modulus is

turned on. That bit-string is appended to a list that will result in the final node ID

with a total of 256 bits.
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1 def calc_node_id(iscc_meta, r, g):

2

3 iscc_decomposed_meta = []

4 tmp_str_meta = ""

5

6 for i in range(0,len(iscc_meta)):

7

8 tmp_str_meta += iscc_meta[i]

9

10 if (i+1) % g == 0:

11 iscc_decomposed_meta.append(tmp_str_meta)

12 tmp_str_meta = ""

13

14 final_r = []

15

16 for i in range(0, len(iscc_decomposed_meta)):

17

18 deco_hex_meta = hexlify(iscc_decomposed_meta[i].encode()).decode

()

19 val_int_meta = int(deco_hex_meta,16) # base 16 for hexa string

20 mod_meta = val_int_meta % r

21 r_string_chunk = [0 for i in range(0,r)]

22 r_string_chunk[mod_meta] = 1

23 final_r.append(r_string_chunk)

24

25 final_r_ = []

26 for el in final_r:

27 final_r_.extend(el)

28

29 return final_r_
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5.2.2 ID generation from Content-Code

The same is for generation from Content-Code, so in this case, the characters

taken to calculate the positions of the bits to be turned on are those in the Content-

Code generated from the image.

The code can be found in the block below.

1 def calc_node_id(iscc_meta, iscc_content, r, g):

2

3 iscc_decomposed_content = []

4 tmp_str_content = ""

5

6 for i in range(0,len(iscc_meta)):

7

8 tmp_str_content += iscc_content[i]

9

10 if (i+1) % g == 0:

11 iscc_decomposed_content.append(tmp_str_content)

12 tmp_str_content = ""

13

14 final_r = []

15

16 for i in range(0, len(iscc_decomposed_content)):

17

18 deco_hex_content = hexlify(iscc_decomposed_content[i].encode()).

decode()

19 val_int_content = int(deco_hex_content,16)

20 mod_content = val_int_content % r

21 r_string_chunk = [0 for i in range(0,r)]

22 r_string_chunk[mod_content] = 1

23 final_r.append(r_string_chunk)

24

25 final_r_ = []



5.2 Concatenated bit-string generation 47

26 for el in final_r:

27 final_r_.extend(el)

28

29 return final_r_

5.2.3 ID generation from Meta-Code & Content-Code

Whereas, as for generation by combining both codes, the two codes within the

method are combined, as shown by the following code.

1 def calc_node_id(iscc_meta, iscc_content, r, g):

2

3 iscc_decomposed_meta = []

4 iscc_decomposed_content = []

5 tmp_str_meta = ""

6 tmp_str_content = ""

7

8 for i in range(0,len(iscc_meta)):

9

10 tmp_str_meta += iscc_meta[i]

11 tmp_str_content += iscc_content[i]

12

13 if (i+1) % g == 0:

14 iscc_decomposed_meta.append(tmp_str_meta)

15 iscc_decomposed_content.append(tmp_str_content)

16 tmp_str_meta = ""

17 tmp_str_content = ""

18

19 final_r = []

20

21 for i in range(0, len(iscc_decomposed_meta)):

22
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23 deco_hex_meta = hexlify(iscc_decomposed_meta[i].encode()).decode

()

24 deco_hex_content = hexlify(iscc_decomposed_content[i].encode()).

decode()

25 val_int_meta = int(deco_hex_meta,16)

26 val_int_content = int(deco_hex_content,16)

27 mod_meta = val_int_meta % r

28 mod_content = val_int_content % r

29 r_string_chunk = [0 for i in range(0,r)]

30 r_string_chunk[mod_meta] = 1

31 r_string_chunk[mod_content] = 1

32 final_r.append(r_string_chunk)

33

34 final_r_ = []

35 for el in final_r:

36 final_r_.extend(el)

37

38 return final_r_

5.3 ID generation from cryptographic Hash

As the last section is devoted to implementing the scripts for generating the IDs

associated with the images, the cryptographic hash, i.e., the yardstick by which

ISSC was tested, is presented.

The mechanism remains the same as the methods presented above, but with the

difference that the script has one less method, calcISCC, and the hash generation

is accomplished directly within the calc node id method.

In the code snippet presented below, the steps are as follows:

• first, the image is read from which then, via the hashlib library, the respec-



5.3 ID generation from cryptographic Hash 49

tive SHA256 will be calculated;

• after which the list containing the hash code chunks divided into g characters

is created;

• Finally, the positions of the bits to be turned on within the bit-string are calcu-

lated by the method with the form explained above.

1 def calc_node_id(file_path, r, g):

2

3 with open(file_path,"rb") as f:

4 bytes = f.read() # read entire file as bytes

5 readable_hash = hl.sha256(bytes).hexdigest()

6

7 k = 0

8 j = 1

9 decomposed_hash = []

10 while k < len(readable_hash):

11 decomposed_hash.append(readable_hash[k:(g*j)])

12 k = g*j

13 j += 1

14

15 r_bit = [0 for i in range(0,r)]

16

17 for el in decomposed_hash:

18 mod = int(el, 16) % r

19 r_bit[mod] = 1

20

21 return readable_hash, r_bit

The create csv and code hamming distance are almost identical to the

ISCC generation node ID method.
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As presented in the Methodology chapter, such scripts are executed for different

configurations of r and g, more precisely for r ranging from 8 to 1024 with steps of

the power of 2, and for each value that r can take, the combinations with g can be

2 and 4 for ISCC, while 8 and 16 for hash, so that for both codes we have the same

number of chunks from which we then go on to derive the positions of bits to be

turned on, since they have different lengths, the SHA256 hash function outputs a

string four times as long as the string produced by a single component of ISCC.

Instead, to compare it to the generation of IDs from bit-string concatenation, g is set

to 4, so there are 16 bits turned on out of 256.

5.4 Internal Hamming distance

In this section and the next two, no distinction will be made in the implemen-

tation between ID generation by concatenation and not since the mechanism is the

same for both.

Once all the CSVs containing the matrices of the distances between the images

within the classes are generated, it is possible to calculate an average internal dis-

tance present within a class, flanked by the standard deviation, so that it is possible

to see if the values deviate much from the calculated average.

The code is developed in this way. There is a script called HammingMean.py

in which only one function reads the CSV file, calculates the various metrics, and

writes them to a JSON file.

The code will be presented in several blocks, given its length.

First, the path to CSV files is created based on r, and g that are passed as a pa-

rameter since these CSVs are located in a path representing r and g used to generate

them, as specified in the methodology.

1 def calc_hamming_mean(self, r, g, r_dim_csvs):
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2

3 r_dir = "r-"+str(r)

4 new_r_dir = os.path.join(r_dim_csvs, r_dir)

5

6 hamming_mean_dict = {}

7

8 g_dir = "g-"+str(g)

9 g_path = os.path.join(new_r_dir, g_dir)

10 hamming_mean_dict[g_dir] = {}

11

12 iscc_dir = "iscc-csvs"

13 iscc_path = os.path.join(g_path, iscc_dir)

After that, for each file that contains the word hamming in the name, since the

CSVs carrying the IDs associated with the images for each class and those with the

distance matrices are in the same folder named the same way but with the word

hamming differentiating them, we go on to create a DataFrame pandas in which to

save the values with which we will later work.

1 for file in os.listdir(iscc_path):

2

3 if "hamming" in str(file):

4

5 csv = os.path.join(iscc_path, file)

6

7 hamming_mean_dict[g_dir][str(file)] = {}

8 df = pd.read_csv(csv)

Finally, since the CSV representing the distance matrices has as many of them as

there are columns within the CSV in which the generated IDs were saved, a for loop

will split those matrices into separate DataFrames on which to go and calculate the



52 5. Implementation

mean and standard deviation with the numpy library, which will be added to the

dictionary that is returned by the function and finally, written to a JSON file.

1 for idx, row in df.iterrows():

2

3 if idx % len(df.keys()) == 0:

4

5 tmp_df = pd.DataFrame(columns=df.keys())

6 arr = df[idx:(idx+len(df.keys()))][:]

7 tmp_df = pd.DataFrame(arr)

8 tmp_df = tmp_df.set_index(’Unnamed: 0’)

9 code = tmp_df.loc[’Type’][0] # take the type of the code

10 tmp_df = tmp_df.drop(’Type’,axis=0)

11 tmp_df = tmp_df.astype(np.float64)

12

13 #tmp_df = tmp_df.mask(np.equal(*np.indices(tmp_df.shape))

)

14 df_lower = np.tril(tmp_df)

15 df_lower[df_lower == 0] = np.nan

16 mean = np.nanmean(df_lower)

17 std = np.nanstd(df_lower)

18 if isnan(mean):

19 hamming_mean_dict[g_dir][str(file)][code+"-mean"] = 0

20 else:

21 hamming_mean_dict[g_dir][str(file)][code+"-mean"] =

mean

22 if isnan(std):

23 hamming_mean_dict[g_dir][str(file)][code+"-std"] = 0

24 else:

25 hamming_mean_dict[g_dir][str(file)][code+"-std"] =

std

26

27 return hamming_mean_dict
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The resulting JSON file from this code will include all the values that r can take,

but only one value that g can take on. In this way, it is possible to divide the com-

binations of g into several files since the folder structure for saving the results sep-

arates files based on the values that g takes. The results will be better analyzed in

the Results chapter.

Regarding calculating the average internal distances between images within

the DHT generated by the concatenated generation ID typology and the hash, the

methodology remains the same; what changes is the path to the CSVs.

5.5 Distance between image classes

As explained above, more than the internal distance is needed to understand the

efficiency of image allocation within the hypercube. What is additionally needed is

to understand how the classes behave with each other, whether they remain close

together or whether they are spaced apart.

The script named Centroids.py contains two functions:

• centroids median: It deals with calculating the centroid taken as the median

between the IDs assigned to the images in the class. Its parameters are: r, g,

r dim csvs, which is the folder where the CSV files are contained;

• hamming centroids median: for each class, calculates the hamming distance

between the centroid and the centroids belonging to the other classes. Its pa-

rameters are g and save json, the folder in which it saves the created JSON

file. In this case, r is not passed as a parameter since this method is not called

inside a loop that passes it r as a parameter but has it implemented inside.
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centroids median

As in the previous case, the path to fetch the CSVs containing the node IDs

associated with the images must be computed.

1 def centroids_median(r, g, r_dim_csvs):

2

3 centroids = {}

4

5 r_dir = "r-"+str(r)

6 new_r_dir = os.path.join(r_dim_csvs, r_dir)

7

8 g_dir = "g-"+str(g)

9 g_path = os.path.join(new_r_dir, g_dir)

10 centroids[g_dir] = {}

11

12 iscc_dir = "iscc-csvs"

13 iscc_path = os.path.join(g_path, iscc_dir)

For each CSV file, the relative binary values of the IDs are transformed into

decimals, from which an ordered list will be derived to fetch the element in the

median position of the list and set it as a centroid.

1 for file in os.listdir(iscc_path):

2

3 if "hamming" not in file:

4

5 csv_path=os.path.join(iscc_path,file)

6

7 df = pd.read_csv(csv_path)

8

9 final_r = df[’Final-R’]

10 ids_to_num = []

11
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12 for el in final_r:

13 bit_n = ""

14 for j in el:

15 if j in [’0’,’1’]:

16 bit_n += str(j)

17 int_n = int(bit_n,2)

18 ids_to_num.append(int_n)

19

20 sorted = np.sort(ids_to_num)

21

22 median_idx = int(len(sorted)/2)

23 median = sorted[median_idx]

24

25 getbinary = lambda x, n: format(x, ’b’).zfill(n)

26

27 centroid_node = getbinary(median, r)

28

29 centroids[g_dir][str(file)] = {

30 "centroid":str(centroid_node),

31 }

32

33 return centroids

Once the centroids of each class for different combinations of the two param-

eters are obtained, a nested JSON file is written, where the nested represents the

combination, associating each class with its own centroid.

hamming centroids median

Once the JSON file containing the class centroids for different combinations of

r and g is created, this method takes care of updating that JSON such that in the

object containing the class centroid, there is another one inside which there are 29



56 5. Implementation

objects of type key-value where the key is a class i represented by the object and

the value is the hamming distance from class j different from the class i.

1 def hamming_centroids_median(g, save_json):

2

3 centroids = json.load(open(os.path.join(save_json,’centroids-

median-iscc.json’), ’r’))

4 i = 8

5 while i<=1024:

6

7 r_dir = "r-"+str(i)

8 g_dir = "g-"+str(g)

9 keys = centroids[r_dir][g_dir].keys()

10

11 for k in keys:

12

13 k_centr = centroids[r_dir][g_dir][k][’centroid’]

14 centroids[r_dir][g_dir][k][’hamming_cents’] = {}

15 for kj in keys:

16 if kj != k:

17 kj_centr = centroids[r_dir][g_dir][kj][’centroid’

]

18 ham_k_kj = hamming(list(k_centr), list(kj_centr))

* len(list(k_centr))

19 centroids[r_dir][g_dir][k][’hamming_cents’][kj] =

ham_k_kj

20

21 i *= 2

22

23 with open(os.path.join(save_json,’centroids-median-iscc.json’), ’

w’) as fp:

24 json.dump(centroids, fp)
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Once this calculation is performed for all classes, the JSON file of centroids is

updated with the hamming distances from the other classes, which will then be

used in calculating the efficiency metric.

5.6 Efficency metric

The purpose of implementing this metric was to find which combination could

maximize the distance between the classes, keeping the distance between the im-

ages of the classes from each other as small as possible.

The code and results can be found in the compare new metric folder, within

which there are two main scripts:

• final new metric.py: it deals with the generation of a JSON file in which the

metrics, calculated as described in the previous chapter, are saved, broken

down by generation type. Thus, there are six main objects: three that in-

volve bit-string concatenation and three that do not, in which other objects

are nested, which we will go into later, based on the generation type;

• highlights.py: once the JSON with all the metrics has been created, this script

generates another one in which it saves the minimum and maximum values

obtained from the various combinations by going to analyze the JSON created

by the previous script.

5.6.1 final new metric.py

This script is very long, so it will be analyzed in blocks. It reads the centroids

calculated in the previous section, calculates the internal distance between the cen-

troid and the other nodes to which the class images have been assigned, and finally,

performs the subtraction between the two after calculating their averages.
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It is composed of three main methods:

• new metric concat(centroid json, csv dir): goes to compute met-

rics only for explained types that involve concatenation between bit-strings.

As parameters, it provides the folder where the JSON files of the centroids are

saved according to which type of ISCC code we are analyzing, whether Meta-

Code, Content-Code, or the combination of the two called Final, and the folder

where the CSVs are saved in which the image-ID association is written;

• new metric or(r,g,rootdir cents,csv dir,check iscc): deals with

the calculation of the efficiency metric and the subsequent comparison be-

tween the metrics generated by ISCC and the hash for generation types that

do not involve bit-string concatenation. Among the parameters, we find two

of them the same as the previous method for centroids and node IDs to which

the images have been associated, with the addition of r and g, since their com-

binations are multiple for these types of node ID generation, and the last pa-

rameter that takes care of checking whether we are analyzing data generated

by ISCC or by hash, to change g accordingly.

• compare new metric(): The latter parameter-free method creates a JSON

file in which all the results derived from the metrics for the different method-

ologies are encapsulated.

new metric concat

At the beginning of this method, the JSON file of centroids is read in which the

hamming distances between one class and all others for each are stored. After that,

all those data structures later used for the final metric calculation are instantiated.

1 def new_metric_concat(centroid_json, csv_dir):

2



5.6 Efficency metric 59

3 result_json = json.load(open(centroid_json, ’r’))

4

5 dictj = result_json

6

7 img_cls = dictj.keys()

8 hamming_dict = {}

9

10 hamming_mean_cents_array = []

11 avg_internal_dist_array = []

12 new_metric_array = []

Next, we enter a for loop that iterates over all the classes within the JSON and

divides into two main sections: the first that deals with calculating an average of

the hamming distances between the i-th class and all the other classes; the second

that goes to retrieve from the CSV file all the IDs of the images associated with the

i-th class and calculates their average distance from its centroid.

We will subtract these two measures from each other, and the resulting value

will be added to a list whose average will return the efficiency metric.

It was decided to add two values representing, respectively, the average of the

averages of the hamming distances between classes and the averages of the internal

distances between classes with their standard deviations to go deeper into the result

received from the efficiency metric.

1 for k in list(img_cls):

2

3 """ MEAN DISTANCE FOR CENTROIDS """

4 hamming_dict = dictj[k][’hamming_cents’]

5 hamming_mean_cents = np.mean(list(hamming_dict.values()))

6

7 """ MEAN DISTANCE FROM CLASS CENTROID TO THE IMAGES """

8 k_csv = csv_dir+"/"+k
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9 df = pd.read_csv(k_csv)

10

11 final_r = df[’Final-R’]

12 k_centr = dictj[k][’centroid’]

13 sum_hamming = 0

14 for el in final_r:

15

16 el1 = str(el).replace(’ ’,’’).replace(’[’,’’).replace(’]’,’’)

.replace(’,’,’’)

17 sum_hamming += hamming(list(k_centr), list(el1)) * len(list(

k_centr))

18

19 avg_internal_dist = sum_hamming / len(final_r)

20 hamming_mean_cents_array.append(hamming_mean_cents)

21 avg_internal_dist_array.append(avg_internal_dist)

22 new_metric_array.append(hamming_mean_cents - avg_internal_dist)

23

24 hamming_mean_cents = np.mean(hamming_mean_cents_array)

25 hamming_sd_cents = np.std(hamming_mean_cents_array)

26 avg_internal_dist = np.mean(avg_internal_dist_array)

27 std_internal_dist = np.std(avg_internal_dist_array)

28 new_metric = np.mean(new_metric_array)

29

30 return hamming_mean_cents, hamming_sd_cents, avg_internal_dist,

std_internal_dist, new_metric

new metric or

The code contained in this method is much the same as presented in the previous

method. What changes is that here r and g are passed in such a way as to go to

the folders and construct a nested JSON representing the combination of the two
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values.

As can be seen below, the parameter check iscc serves as a control to go in

and modify g in case we are analyzing the results from applying the cryptographic

hash to the images and then go in and quadruple the value of g.

1 def new_metric_or(r,g,rootdir_cents,csv_dir,check_iscc):

2

3 if check_iscc == "iscc":

4 centroid_json = os.path.join(rootdir_cents, "centroids-median-

iscc.json")

5 else:

6 g = g*4

7 centroid_json = os.path.join(rootdir_cents, "centroids-hash-

median.json")

8

9 r_dir = "r-"+str(r)

10 g_dir = "g-"+str(g)

11

12 result_json = json.load(open(centroid_json, ’r’))

13 dictj = result_json[r_dir][g_dir]

14 img_cls = dictj.keys()

15

16 hamming_dict = {}

17 hamming_mean_cents_array = []

18 avg_internal_dist_array = []

19 new_metric_array = []

From here to the end of the method, the mechanism and implemented code

are almost to the code presented in the previous method. Then we iterate over

the classes, calculate the average hamming distance between them and the average

hamming distance within the class, and then subtract them and derive the efficiency

metric.
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Here, too, the averages of the two values that generated the efficiency metric are

saved so that we can go and do a more in-depth analysis of the results.

compare new metric

This method reads all the folders in the project’s root folder to check their prefix.

1 def compare_new_metric():

2

3 root = ".."

4 final_compare_json = {}

5

6 for dir in os.listdir(root):

In the case where the prefix starts with id concat, then we are going to build

that part of the dictionary instantiated at the beginning, called final compare json,

with the new metric concat method, separating the metric computed from the

files generated with ISCC from the metric computed from the files generated with

the hash. Finally, a subtraction between the two efficiency metrics derived from

ISCC and hash is performed, and the result will or will not represent a better per-

formance of ISCC than the hash.

1 if "id_concat" in dir:

2

3 centroids_json_iscc = root+"/"+dir+"/results/iscc/centroids-

median-iscc.json"

4 centroids_json_hash = root+"/"+dir+"/results/hash/centroids-

hash-median.json"

5 csvs_dir_iscc = root+"/"+dir+"/results/iscc/csvs"

6 csvs_dir_hash = root+"/"+dir+"/results/hash/csvs"

7

8 hamming_mean_cents_hash, hamming_sd_cents_hash,

avg_internal_dist_hash, std_internal_dist_hash, new_metric_hash =
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new_metric_concat(centroids_json_hash, csvs_dir_hash)

9 hamming_mean_cents_iscc, hamming_sd_cents_iscc,

avg_internal_dist_iscc, std_internal_dist_iscc, new_metric_iscc =

new_metric_concat(centroids_json_iscc, csvs_dir_iscc)

10

11 compare_metric = new_metric_iscc - abs(new_metric_hash)

In the case where, on the other hand, the prefix starts with id concat, we will

use the new metric or method to go and compute the metrics on the JSON and

CSV files, which, however, in addition to representing the methodology will also

represent the combination of r and g as per the test design.

1 elif "id_or" in dir:

2

3 final_compare_json[dir] = {}

4

5 for g in [2,4]:

6

7 centroids_dir = root+"/"+dir+"/results/iscc-"+str(g)+"

_hash-"+str(g*4)+"/centroids"

8 csv_dir = root+"/"+dir+"/results/iscc-"+str(g)+"_hash-"+

str(g*4)+"/csvs/"

9

10 final_compare_json[dir]["iscc-"+str(g)+"_hash-"+str(g*4)]

= {}

11

12 r = 8

13

14 while r<=1024:

15

16 final_compare_json[dir]["iscc-"+str(g)+"_hash-"+str(g

*4)][’r-’+str(r)] = {}
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17

18 hamming_mean_cents_hash, hamming_sd_cents_hash,

avg_internal_dist_hash, std_internal_dist_hash, new_metric_hash =

new_metric_or(r,g,centroids_dir, csv_dir, ’hash’)

19 hamming_mean_cents_iscc, hamming_sd_cents_iscc,

avg_internal_dist_iscc, std_internal_dist_iscc, new_metric_iscc =

new_metric_or(r,g,centroids_dir, csv_dir, ’iscc’)

20

21 compare_metric = new_metric_iscc - abs(

new_metric_hash)

Once the dictionary, including all metrics for all types of ID generation, has been

concluded, the JSON in which all values have been saved is created.

1 with open(os.path.join(’./’,’compare_new_metric.json’), ’w’) as fp:

2 json.dump(final_compare_json, fp)

5.6.2 highlights.py

Without showing the code, this script fetches for both the ID generation typolo-

gies and different combinations of the r and g parameters, the minimum value and

the maximum value saved as compare metric, that is, the value obtained by sub-

tracting from the metric calculated for ISCC, the metric calculated for the crypto-

graphic hash.

In this way, only the relevant results given by executing the efficiency metric

will be analyzed.
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5.7 Query Testing

This last section will present how a query system was implemented on a simu-

lated hypercube to see how an actual system would behave in searching for images

based on the chosen type.

The simulation was performed for an ISCC-based and hash-based architecture,

so the two methodologies could be compared once the results were obtained.

The generation of the ID to be associated with the images is done by considering

the Meta-Code of ISCC, and the reasons for this choice will be shown in the next

chapter. As r values, 8, 12, and 16 were taken. While, for g, values 2 and 4 were cho-

sen for ISCC, and consequently, values 8 and 16 were chosen for hash to compare

which combination reacted best to image allocation within the DHT.

This section will not go deeper into the code, given that most of it have already

been seen in previous sections.

There are two scripts:

• query-iscc.py: which deals with the generation of results based on the param-

eters r and g given as input regarding the allocation of images in the decen-

tralized architecture given the generation of IDs via the Meta-Code;

• query-hash.py: creates results regarding the use of hash as a methodology for

generating IDs from images.

The image class chosen for the evaluation of the goodness of the methodology

is san petronio, in which the images of the Basilica of San Petronio in Bologna

are encapsulated. Thus, a picture that is not among those in the class was taken and

evaluated by the query on the hypercube.

In addition to the images of the san petronio class, five other classes were added

to see how many resulting images were related to the image-query class.
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The two scripts’ mechanisms are the same, so no distinction will be made in

explaining the implementation. The only thing that changes is how the ID was

generated based on the chosen encoding.

5.7.1 Query script

First, the variables are initialized that we will later use to: access the picture with

which run the query, access the picture classes, save the values of r and g, instantiate

the connection to the IPFS node on Docker, and the dictionary that will contain the

results of the query.

For writing the code, inspiration was taken from the implementation of a hyper-

cube using Docker from this GitHub repository [27].

1 if __name__ == "__main__":

2

3 query_image = "san_petronio.jpg"

4 rootdir = ’../photos/’

5 r_list = [8, 12, 16]

6 g = 2

7

8 addr = ’/ip4/0.0.0.0/tcp/5001’

9 ipfs_client = ipfshttpclient.connect(addr)

10

11

12 results = {}

After that, we enter a for loop that iterates over the values assigned to r, and the

variables we will need to visit the nodes in the hypercube are instantiated, such as:

• HOPS: the counter of hops that are executed to search for the requested ob-

jects;
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• NODES: The number of nodes present in the hypercube, that are 2r;

• LABELS: all node IDs generated based on the NODES variable;

• graph: the hypercube-shaped graph generated via the networkx library;

• initial id: The ID from which to start the hops for searching nodes in the hy-

percube.

1 for r in r_list:

2

3 HOPS = 0

4

5 NODES = 2 ** r

6

7 LABELS = {tuple(int(j) for j in create_binary_id(i, r))

8 : create_binary_id(i, r) for i in range(0, NODES)}

9

10 graph = nx.relabel_nodes(

11 nx.generators.lattice.hypercube_graph(r), LABELS)

12

13 initial_id = ’’

14 for i in range(0,r):

15 initial_id += ’0’

Next, three methods are called that we will need to go and create all those files

needed for the simulation:

• create csv(rootdir, r, g): method previously seen, goes to create the CSV files

for each class, in which the image-ID associations are saved;

• create json hypercube(LABELS, r): which creates a JSON file that will repre-

sent the simulated hypercube where key-value pairs correspond to ID-list of

objects contained in the node with that ID;
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• add obj ipfs(rootdir, ipfs client): For each image saved in the CSVs of the im-

age classes chosen for the test, it saves a copy on the IPFS node returning the

relevant CIDs with which to download them.

1 create_csv(rootdir, r, g)

2

3 create_json_hypercube(LABELS, r)

4

5 add_obj_ipfs(rootdir, ipfs_client)

Finally, the methods for creating and executing the architecture query are called.

First, the JSON representing the hypercube for the r that we are evaluating in

the loop is read; second, the node in which the image with which the query is being

run should fall is computed via the calc query image node method; third, the

query on the graph is run via the search method, which returns the number of hops

run by the query and the objects that were found by the query.

1 hypercube = json.load(open(’r-’+str(r)+’/iscc/hypercube.json’, ’r

’))

2

3 query_image_node = str(calc_query_image_node(query_image,r)).

replace("[","").replace("]","").replace(",","").replace(" ","")

4

5 hops_count_search, objects = search(graph, initial_id,

query_image_node, hypercube, NODES, 15)

In the end, a variable called true obj is created in which the CIDs correspond-

ing to the images of the san petronio class are stored, and through a for loop, how

many of the objects returned by the query belonging to the class are evaluated to

determine how many of them are correct.

These values are entered into the dictionary instantiated at the beginning of the



5.7 Query Testing 69

script, which will then be saved as a JSON file.

1 true_obj = list(json.load(open(’r-’+str(r)+’/hash/

san_petronio_hashs.json’,’r’)).values())

2

3 positive = 0

4

5 for el in objects:

6 if el in true_obj:

7 positive += 1

8 print(positive)

Being the core method of the querying part, the search method that goes to

perform the research within the hypercube will be briefly presented.

search

This function provides six parameters:

• graph: the graph created by networkx in the shape of a hypercube;

• initial id: the node ID of the node from which to start the hops;

• keyword: the keyword generated by the image with which the query is being

run;

• hypercube: the JSON file containing all the objects assigned to the nodes;

• nodes: the number of nodes present in the hypercube;

• threshold: the number of objects for which the function should stop searching.

The goal of the threshold parameter and to distinguish a Pin-search from a

Superset-search. In the case where the threshold is set to -1, the former is executed,

while for numbers greater than 0, the latter is executed.
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As seen in the code presented below, in the case where the threshold value is -1,

the if condition is met, and we enter another if in which we check whether the key-

word of the node we are looking for matches the starting node. If it does, the hops

are 0, and the objects belonging to that node are returned; otherwise, the shortest

path between the starting node and the node we want to get to is calculated, and

the hops are given by the number of nodes in the path minus one, i.e., the starting

node.

1 def search(graph, initial_id, keyword, hypercube, nodes, threshold=-1):

2

3 hops = 0

4 if threshold == -1:

5

6 if keyword == initial_id:

7 return 0, hypercube[initial_id]

8 else:

9 path_to_node = nx.shortest_path(graph, initial_id, keyword)

10 hops = len(path_to_node)-1

11 return hops, hypercube[path_to_node[-1:][0]]

If the threshold has a value greater than 0, the Superset-search algorithm is ap-

plied, which works as follows.

An empty list is instantiated in which to go and save the objects resulting from

the search. Secondly, the path to the node corresponding to the keyword generated

by the image is computed, and the objects corresponding to that node are taken.

Next, that node is set as the root of the search from which to search for all the

neighbors to examine.

1 elif threshold > 0:

2

3 results_object = []
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4 path_to_node = nx.shortest_path(graph, initial_id, keyword)

5 hops += len(path_to_node)-1

6 root = path_to_node[-1:][0]

7 results_object.extend(hypercube[root])

8 connected_nodes = graph.neighbors(root)

From here, we enter a while loop that ends when the threshold is reached or if

all nodes have been visited, and thus there are no more objects to search.

The while loop continues until the threshold has been filled or all nodes have

been visited, and if one of these conditions is reached, the number of hops and the

objects resulting from the search are returned. On the other hand, if the conditions

are not reached, we continue to search the neighboring nodes until the condition is

fulfilled. The script continues to cycle over the nodes near the root, and for each

visited node, we add its ID to the list of checked nodes, append the objects con-

tained within it to the results list, increase the hops and decrease the threshold

based on the number of objects found. This operation will then be computed for all

the neighboring nodes until one of the two conditions becomes false.

1 visited = []

2 while threshold > 0 and len(visited) < nodes:

3

4 connected_nodes = list(connected_nodes)

5 for node in connected_nodes:

6

7 if node not in visited:

8 visited.append(node)

9 print(visited)

10 results_object.extend(hypercube[node])

11 hops += 1

12 threshold-=len(hypercube[node])

13 if threshold <= 0 or len(visited) >= nodes:
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14 break

15

16 if threshold >= 0 or len(visited) <= nodes:

17 children = []

18 for node in connected_nodes:

19 children.extend(graph.neighbors(node))

20 connected_nodes = children

21

22 return hops, results_object
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Results

This chapter will present the results obtained from the execution of the scripts

presented in the previous chapter.

Results from internal hamming distance and distances between classes will not

be shown, given that they are part of the Efficiency Metric algorithm.

6.1 Efficiency Metric

The analysis of the results regarding efficiency metrics will be carried out in this

way. As the methodologies without concatenation have multiple combinations of r

and g, as was explained in this 4.2.1, the output values given by the different combi-

nations of g’s will be examined individually. Two graphs will be shown: one for the

combination of g = 2 for ISCC and g = 8 for the hash, and the other having the two

values doubled. While for methods with concatenation, a graph will be displayed

for each methodology, and considerations will be made in the final subsection.

The values reported in green in the images represent the result between the sub-

traction of the metric derived from ID generation by ISCC, blue color, minus the

same one derived by hashing, orange color.

73
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What is desired is for the metric derived from ISCC to be as much greater than

the metric derived from using the cryptographic hash. This result suggests that

ISCC is a better option for image allocation within a DHT. Thus if the absolute

maximum value obtained from the subtraction of the two metrics absolute value

is greater than the absolute minimum value, we would understand that the ISCC

performs better than the hash. The opposite otherwise.

6.1.1 Non-concatenated bit-string generation

The results regarding the methods that do not involve concatenation will be

formed by two graphs, more precisely two bar-plots: the first one represents the

use of g equal to 2 for ISCC and equal to 8 for the hash, while in the second g was

set to 4 for ISCC and 16 for hash.

This distinction can be noticed in the title of the subplots in the images.

Meta-Code

In the image 6.1, it is possible to see the minimum and maximum values gener-

ated by comparing the ISCC and hash metrics for the results from creating the IDs

associated with the images using only the meta code.

Regarding g set to 2 for ISCC and 8 for the hash, we find that the number of bits

present in a string that resulted in the minimum value was 8, meaning that with 8

identifying bits for a node and g set equal to 2, the metric of ISCC did not prove to

be much better than the hash, as the difference is just over 1.

While the maximum for the combination of the different r’s with g set equal

to 2 for ISCC and 8 for hash was reached by r = 1024, with a value given by the

subtraction of the two metrics of just over 6.

Concerning the combination of the different r’s with g = 4 for ISCC and g = 16
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Figure 6.1: Efficiency Metric results from non-concatenated Meta-Code

for the hash, we find a better minimum value than the minimum of the previous g

setting, given by r = 16. At the same time, the maximum is slightly lower, with a

value just above four which, as in the previous case, was given by r = 1024.

So, having made these considerations, regarding the generation of IDs starting

only from the Meta-Code, we have that r = 1024 and g = 2 are the best combina-

tion for the generation of IDs to be associated with images. It remains to be taken

into account, however, that this type is affected by the image metadata, which can

change and go to improve or worsen the performance. Nevertheless, in general,

from the data resulting from such metrics, it was noted that the larger r is, the bet-

ter Meta-Code performs than the hash.

Content-Code

Compared to the Meta-Code, the content code behaved slightly differently. In

the image 6.2, you can see the two subplots related to the different values assigned
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Figure 6.2: Efficiency Metric results from non-concatenated Content-Code

to g.

Here we do not have that in all cases the comparison of metrics was always

better for ISCC, indeed, in the two minimal cases, we have that for r = 256, and g =

2 for ISCC and hash g = 8, and for r = 8 and g = 4 for ISCC and g = 16 for the hash,

the generation of IDs from the decomposition of the cryptographic hash was better

in image allocation than using Content-Code.

This phenomenon could be attributed to the fact that Content-Code uses the

image’s content, like its pixels. Since the class images represent the same subject in

the picture but are very different from each other, the algorithm generates IDs from

the Content-Code could vary a lot, so the hash has an efficiency metric greater than

ISCC. However, the difference remains small since, for g set to 2, the comparison

results in just under 0.4, and for g equal to 4, the subtraction is 0.05.

Analyzing the maximum values of both subplots, we can see that ISCC again

has a more significant efficiency metric than the hash. However, only slightly, as
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for g = 2, we have a result just above 0.6, given by r = 64, while for g = 4, we have a

result equal to 0.25.

We can see that the behavior is more random than Meta-Code. We do not have

an improvement as r rises, but it is a behavior that improves more based on the

similarity of the images, regardless of r and g.

Meta-Code and Content-Code

Figure 6.3: Efficiency Metric results from non-concatenated Meta-Code & Content-

Code

From the generation of IDs using Meta-Code and Content-Code jointly, we see

that the behavior of image allocation is very similar to that of Meta-Code used in-

dividually.

As seen in the image 6.3, we observe that from very small r’s, the minimum

value resulting from the subtraction of the two metrics from ISCC and hash is gen-

erated. In contrast, for very large r’s, it can obtain a greater detachment between
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ISCC and hash at the performance level, with ISCC performing better.

Another interesting observation is that the maximum values obtained from this

type of ID generation are higher than the maximums obtained using Meta-Code

alone but by very little. This behavior could be due to the use of Content-Code

providing both an advantage and a disadvantage simultaneously. An advantage

because it helps to put more bits in the strings and thus makes the IDs of similar

images more similar. At the same time, the disadvantage is its poor performance in

recognizing similar images.

Final consideration

In the previous subsections, we have seen how the various types of ID gen-

eration behave, starting from the components of ISCC taken separately and then

joined.

Comparing them, the result is that using the Meta-Code and Content-Code

joined to form an ID is the best option since they far outperform the hash.

Nevertheless, one essential detail emerges if we examine the data more closely.

Looking at the averages of the hamming distances between the classes and the aver-

ages of the internal distances to the images of a class of the metric obtained by Meta-

Code and the metric obtained by the conjunction of Meta-Code and Content-Code,

it comes out that, in fact, the average distance between the centroids of the various

classes resulting, from the technique involving the union of the two ISCC compo-

nents, is almost twice as high as the same one generated by Meta-Code. However,

regarding the distance within a class, we have that the average value resulting from

using the two codes together is three times larger than that calculated from using

the Meta-Code individually.

This detail goes to indicate to us that, in terms of performance, among which

falls the number of hops to search for objects within the DHT inherent to the request
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we are making, the use of Meta-Code alone is better suited for the generation of

IDs to be associated with images in a hypercube architecture, because the number

of hops will be fewer than if we had generated the IDs with the two components

together.

6.1.2 Concatenated bit-string generation

This subsection will analyze the results by comparing the efficiency metric cal-

culated on ID generation from ISCC and hashes. Then, we will compare how it

differs between ID generation that does not involve bit-string concatenation.

Meta-Code

Figure 6.4: Efficiency Metric results from concatenated Meta-Code
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Figure 6.4 shows the metrics and their comparison regarding the calculation of

results with the IDs generated by the Meta-Code alone.

As can be seen, in this case, ISCC performs much better than the hash, returning

a subtraction between the two of just under 12.

Content-Code

Figure 6.5: Efficiency Metric results from concatenated Content-Code

Content-Code also got the better of the hash, but less than Meta-Code, precisely

because, as is written in the previous subsection, the behavior of Content-Code is

more random, relying on the content of the images.

Figure 6.5 shows the bar plot in which the metrics and their comparison are

shown.
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Meta-Code & Content-Code

Figure 6.6: Efficiency Metric results from concatenated Meta-Code & Content-Code

Combining the two ISCC components results in behavior similar to the non-

concatenation of bit-strings. As we can see from the graph in figure 6.6, which

represents the metrics obtained from the conjunction of Meta-Code and Content-

Code, similar results are obtained to the use of Meta-Code alone, 6.4, with a slight

improvement, probably made by Content-Code for the reasons explained above, in

the previous section.

Final consideration

Given the results of all three types of generating node IDs from the images using

a technique of concatenating the bit-strings generated by the individual characters
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of ISCC, the conclusion we tend toward is that the combination of the two compo-

nents is the better choice.

Even for these methodologies, the situation arose where the values that gen-

erated the ISCC metrics by combining the two components performed worse in

terms of the internal distance between classes, a factor probably given by the use

of Content-Code. Therefore, considering the number of hops to be performed as a

performance indicator, the generation of IDs via Meta-Code is the better choice.

6.1.3 Non-concatenation VS Concatenation

As a final comparison, we are left to examine which of the two methodologies,

between using concatenation to form a bit-string in which each r bit represented the

mapping of an ISCC character to the ID or going to set a predefined number of r

bits and map a set of characters within that ID; performed better.

Keeping in mind the final considerations written for both methodologies, only

the Meta-Code will be considered as the starting code to generate the hypercube

keywords.

In the type that does not involve concatenation, the number of bits required to

make ISCC perform better than the hash was 1024, either for g set equal to 2 or

equal to 4, but of the two g’s, the former performed better; it is possible to see the

results in this graphic 6.1.

Comparing the value just mentioned, which corresponds to just over 6, gener-

ated by an efficiency metric on ISCC of 7, with the comparison of the two metrics

derived from ISCC and hash in the case where concatenation is applied, it turns out

that the latter performs much better than the former.
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6.2 Query testing

The results for query testing on the simulated hypercube will be presented in

this way. Three subsections will be created: the first one that will compare the be-

havior of ISCC with the hash having g set to 2 for the former and 8 for the latter;

The second subsection will be presented in the same way but with the results gen-

erated with g doubled compared to the first one; inside the third subsection, final

considerations will be made about what was obtained.

As mentioned in previous chapters, the r’s used for hypercube creations are 8,

12, and 16.

Regarding the limit set to Superset-search, since there are 15 images in a class,

this value was entered as the number to stop the search.

The bar graphs shown in the following images have three columns for each r.

The first column represents how many of the images returned by the search match

the images of the relevant photo class; The second column reports the total num-

ber of objects returned by the visited nodes, and the third and final column is the

number of hops computed to arrive at returning the limiting number of objects.

6.2.1 Searching with ID generating from g equals 2 and 8

Pin-search

Figure 6.7 shows the query results for all three r with Pin-search performed on

the node generation from the Meta-Code of the images.

While in figure 6.8, the results of the query performed on the simulated hyper-

cube by basing the generation of IDs on cryptographic hashes are shown.

Neither configuration was able to find a node among those to which the images

related to the san petronio class were assigned, and the number of hops represents

the hamming distance between the node with all bits set to 0 and the node that was
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Figure 6.7: Pin-search results from ISCC ID generation with g=2

Figure 6.8: Pin-search results from Hash ID generation with g=8
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Figure 6.9: Superset-set search results from ISCC ID generation with g=2

generated by the algorithm to which the image was given as input to perform the

query.

Superset-search

In contrast, as for Superset-search, the results are more attractive.

In Figures 6.9 and 6.10, we can find the query results for ISCC and Hash, respec-

tively. The number of hops has increased by far, but so has the number of images

related to the class we are searching for.

The r that performed best concerning ISCC was 12, with a total of 17 objects

returned, 13 belonging to the class we are looking for, which is two less than the

total number of images contained within it. There is also to take into account the

hops, which are far more, 253 to be precise, than those obtained by the hypercube
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Figure 6.10: Superset-set search results from Hash ID generation with g=8

whose nodes are identified by 8 bits, which, however, found only three images

inherent to the class out of 19.

On the hash side, however, we see much worse performances, with a maximum

of 4 out of 15 images found belonging to the searched class. Moreover, the num-

ber of hops accomplished is ten times larger than the maximum number of hops

achieved by ISCC with r equal to 16.

6.2.2 Searching with ID generating from g equals 4 and 16

Pin-search

Doubling the g, we see a substantial change as far as ISCC is concerned. In figure

6.11, it is possible to see that there were matches for r equals 8 and 16. However,

only in the hypercube with eight identifying bits does the searched node possess an
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Figure 6.11: Pin-search results from ISCC ID generation with g=4

Figure 6.12: Pin-search results from Hash ID generation with g=16
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Figure 6.13: Superset-set search results from ISCC ID generation with g=4

image belonging to the class san petronio.

In contrast, as far as the cryptographic hash is concerned, the behavior remains

identical to the previous subsection. In the nodes found, no images or images be-

longing to the wished class existed. The results can be seen in figure 6.12.

Superset-search

Superset-search also showed exciting results, especially regarding the applica-

tion of ISCC to a hypercube with 16 identification bits. As shown in figure 6.13, we

note how with only ten hops, 20 objects were retrieved, 10 of which belong to the

desired class.

On the other hand, the hash did not prove capable of holding its own, as the

best results are obtained from using 8 and 16-bit identifiers, having both retrieved

15 images, 4 of them belonging to the san petronio class. However, as shown in
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Figure 6.14: Superset-set search results from Hash ID generation with g=16

figure 6.14, the number of hops performed is much greater than the number of

hops of the hypercube that uses ISCC’s Meta-Code to generate the node IDs to be

assigned to the images.

6.2.3 Final consideration

After analyzing the two research techniques on the two types of ISCC and cryp-

tographic hash code usage based on theoretical bounds tested through efficiency

metrics and a simulated hypercube query system, it is possible to say that ISCC

performs better in allocating media files within a hypercube-shaped Distributed

Hash Table.

In particular, the Meta-Code component of ISCC has enabled promising results

on such an architecture, capturing, through the metadata inserted in the images, the
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similarity between images and placing them close together within the DHT. The al-

location allowed us to obtain a discrete number of images related to the query being

accomplished while containing the number of hops within a limited value, consid-

ering that the smallest hypercube on which the query system was tested includes

256 nodes, and the largest one contains more than 60 thousand nodes.

Figure 6.15: Sub-graph of nodes containing images with ISCC allocation

Figure 6.15 and 6.16 show how the images were allocated over the hypercube

nodes with eight identifying bits, respectively, for ISCC and cryptographic hash.

We can notice that ISCC obtains a more effective clustering for images of the

same class; the nodes containing the images of the same class stay closer, and the

ones containing images of different classes stay far apart. Instead, the image alloca-

tion with hash is more spread over the hypercube, causing more hops to reach the

object’s threshold and performing worse in terms of returned images coherent with
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Figure 6.16: Sub-graph of nodes containing images with Hash allocation

the query.

In both subgraphs, nodes colored in gray represent them which contain im-

ages among more classes than one. In the ISCC subgraph, 6.15, the san petronio,

arco trionfo, and arena verona classes have only one or two nodes associated and

stay closer to the nodes that contain mixed images. This means that most images

were mixed in some nodes, leading to the Pin search and Super-set search results.

The spread in the hypercube created with the hash technique, 6.16, is due to the

few images allocated in each node. Indeed, more have only one image associated,

as reported from the node labels, and this leads to a significant number of hops and

few images returned correlated with the query.





Chapter 7

Conclusions

In this thesis, a decentralized architecture based on two technologies was pre-

sented: Distributed Hash Tables (DHT), in this case in the form of a hypercube, and

Decentralized File Storage (DFS), i.e., IPFS.

The purpose of this work was to look for a more efficient methodology of as-

signing objects, saved as hashes of them, to the nodes of the DHT in such a way

as to reduce as far as possible the number of hops, i.e., jumps between peers, and

make sure that the objects returned belonged to the search that is being performed.

Image type files were chosen as the use case for this objective to try to place

similar images close together and different images far apart between nodes.

To this end, a new technology called the International Standard Content Code

(ISCC) has been introduced to identify digital files within decentralized systems.

This standard uses content-driven, locality-sensitive, and similarity-preserving hash-

ing functions. It is composed of four components that go to identify a media file, of

which only two have been chosen for the generation of the node IDs to which the

images within the DHT should be assigned, namely Meta-Code and Content-Code.

The former bases the generation of the file ID on the metadata it contains, the latter

on the file’s actual content, for example, the pixels in an image.
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After that, the test design and implementation were presented to check how

ISCC performed compared to a system that assigns IPFS CIDs to the nodes in a

more random manner by exploiting the SHA-256 of the images.

The results showed that ISCC’s Meta-Code best fits the purpose of the thesis

by obtaining discrete values regarding the efficiency metric designed to measure

the performance of various architecture implementations. Later, that system was

used to develop a simulation to perform a query on the hypercube and see how the

search using the Pin-search and Superset-search systems was performed.

The theoretical tests proved correct in identifying Meta-Code as a better tool

than hash for a complex query system based on a hypercube-shaped distributed

hash table. The hops accomplished within the architecture are smaller than that

based on ID assignment from the image hash and with better results from the point

of view of the returned objects matching the searched objects.

7.1 Future developments

Future developments that can be performed to try to improve the use of ISCC in

image allocation within a hypercube-shaped Decentralized Hash Table architecture

are:

• run new tests with new combinations of r and g to see if there are better ones;

• see if using different components of ISCC improves or worsens performance,

e.g., taking Meta-Code and Data-Code;

• to see if new types of bit-string generation other than the one implemented in

this thesis work, e.g., going for the base58-iscc characters based on their po-

sition and meaning shown in figure 2.3, can improve the allocation of images

within nodes;
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• tests new operators in addition to OR to see how image allocation behaves.
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tarsi e con affetto accettando quelli che sono miei difetti.


	List of Figures
	Introduction
	State of the Art
	Background
	Decentralized File Storage
	Distributed Hash Table
	International Standard Content Code

	Related works

	Architecture
	Methodology
	Images dataset
	Images ID Generation
	Non-concatenated bit-string generation
	Concatenated bit-string generation

	Internal Hamming distance
	Distance between image classes
	Efficiency metric
	Query testing

	Implementation
	Non-concatenated bit-string generation
	ID generation from Meta-Code
	ID generation from Content-Code
	ID generation from Meta-Code & Content-Code

	Concatenated bit-string generation
	ID generation from Meta-Code
	ID generation from Content-Code
	ID generation from Meta-Code & Content-Code

	ID generation from cryptographic Hash
	Internal Hamming distance
	Distance between image classes
	Efficency metric
	final_new_metric.py
	highlights.py

	Query Testing
	Query script


	Results
	Efficiency Metric
	Non-concatenated bit-string generation
	Concatenated bit-string generation
	Non-concatenation VS Concatenation

	Query testing
	Searching with ID generating from g equals 2 and 8
	Searching with ID generating from g equals 4 and 16
	Final consideration


	Conclusions
	Future developments

	Bibliography

