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The greatest danger for most of

us is not that our aim is too

high and we miss it, but that is

it too low and we reach it.

Michelangelo Buonarroti



Sommario

Le applicazioni che offrono servizi sulla base della posizione degli utenti sono sempre

più utilizzate, a partire dal navigatore fino ad arrivare ai sistemi di trasporto intelligenti

(ITS) i quali permetteranno ai veicoli di comunicare tra loro. Alcune di questi servizi

permettono perfino di ottenere qualche incentivo se l’utente visita o passa per determinate

zone. Per esempio un negozio potrebbe offrire dei coupon alle persone che si trovano nei

paraggi. Tuttavia, la posizione degli utenti è facilmente falsificabile, ed in quest’ultima

tipologia di servizi, essi potrebbero ottenere gli incentivi in modo illecito, raggirando il

sistema. Diviene quindi necessario implementare un’architettura in grado di impedire alle

persone di falsificare la loro posizione. A tal fine, numerosi lavori sono stati proposti, i

quali delegherebbero la realizzazione di "prove di luogo" a dei server centralizzati oppure

collocherebbero degli access point in grado di rilasciare prove o certificati a quegli utenti

che si trovano vicino. In questo lavoro di tesi abbiamo ideato un’architettura diversa

da quelle dei lavori correlati, cercando di utilizzare le funzionalità offerte dalla tecnologia

blockchain e dalla memorizzazione distribuita. In questo modo è stato possibile progettare

una soluzione che fosse decentralizzata e trasparente, assicurando l’immutabilità dei dati

mediante l’utilizzo della blockchain. Inoltre, verrà dettagliato un’idea di caso d’uso da

realizzare utilizzando l’architettura da noi proposta, andando ad evidenziare i vantaggi

che, potenzialmente, si potrebbero trarre da essa. Infine, abbiamo implementato parte del

sistema in questione, misurando i tempi ed i costi richiesti dalle transazioni su alcune delle

blockchain disponibili al giorno d’oggi, utilizzando le infrastrutture messe a disposizione

da Ethereum, Polygon e Algorand.





Abstract

Applications that offer services leveraging the user’s location are increasingly used,

starting with a navigation system and continuing with Intelligent Transportation Systems,

which would allow communication between vehicles and road infrastructures. Some of

these services also enable incentives if the user visits specific areas. For example, a shop

could reward the users placed nearby with coupons. However, users’ location could be

spoofed, i.e., trick a system into thinking that the user is in one location while he is in

another. In the latter category, they could be incentivized to cheat by deceiving the system

and, for this reason, designing a system architecture is necessary to prevent a user from

submitting a fake location. For this purpose, many works have been proposed, delegating

the creation process of location proof to a centralized entity or placing access points

empowered to build proofs or certificates and send them to the nearby users, attesting

their position. In this thesis work, an architecture different from the related research

has been proposed, leveraging blockchain features and distributed stored mechanism. In

this way, we were able to implement a decentralized and transparent solution, ensuring

a tamper-proof ledger through the use of blockchain. In addition, a use case will be

detailed, showing how the architecture introduced by us could be used and highlighting

the advantages. Finally, we have implemented some components of the proposed system,

measuring the latencies and costs required by the blockchain transactions during the

interaction of the users. These tests were conducted on different blockchains: Ethereum,

Polygon, and Algorand.
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Introduction

Nowadays, many users’ activities are supported by a different number of mobile appli-

cations, leveraging their position to offer specific location-based services. However, it is

also possible to spoof the user location, tricking the system and, sometimes, even causing

damage to the platform itself.

In this work, we identified an application use case that we would take as an example,

proposing a solution to the above problem, to which the related works refer as Proof of

Location. The use case proposed by us will allow the users, located in a specific location,

to make reports about the context in which they are, through a collaborative approach

and using their mobile phone. The main category of the reports will focus on our environ-

ment; for example, it will be possible to indicate if a river presents oily spots or if there

are large quantities of illegally abandoned wastes nearby. However, to ensure that users

are where they claim to be, we decided to focus on the design of the Proof of Location

system. In particular, we opted to build a decentralized architecture, using tools such

as blockchain and leveraging on a distributed storage mechanism. More precisely, users

can generate location-proof in a private, decentralized, and distributed way, using nearby

users as witnesses.

These choices allow us to inherit the features of the Distributed Ledger Technology and

to propose a system different from the related works which rely on a trusted third party,

for example, the use of the blockchains will guarantee that the reports will be created

without spoofing the location and data will be readable by a broad audience, certifying

1



2 Introduction

that a user’s mobile device is in a specific location. We will also need to check the user’s

identity because they may deliberately impersonate other people who are not really.

We decided to test our decentralized application on different blockchains since many ex-

ist, performing a performance analysis and evaluating speed and cost transaction metrics.

Specifically, we chose two of the leading blockchains, that means Ethereum and Algorand,

also using a layer-2 solution proposed by Polygon chain. To this purpose, we used Reach,

a blockchain agnostic language, which allows us to build smart contracts starting from a

single source code and generating the code for each of the blockchains used by us.

Currently, many distributed tools are emerging, such as IPFS and DLTs. We decided to

build a project that is entirely decentralized and subsequently show what the trade-off

of adopting this choice is. We proposed a sustainable and environment-friendly use case

that removes the single point of failure and intermediary. Indeed, we decided to use tools

such as blockchain, DHT, decentralized identity, and others to help ourselves to realize

something truly decentralized, focusing on transparency, data availability, and integrity.

Every design choice that we made has a sustainable perspective. For example, we did

not test our application only on Ethereum, the most famous and adopted blockchain; in-

stead, we also decided to use Algorand since it is considered a green blockchain to identify

which could be suitable for this type of use case. We want to show that the applications

that could leverage the blockchain are not only finance-centered, but they can range from

different fields introducing the advantages of using this type of technology as fast trans-

actions, low fees, interoperability, and removing the intermediary.

In summary, the contribution of this work concerns the creation of a Proof of Location

system which will prevent fake-location submission and where it is provided the oppor-

tunity to store the data in a decentralized architecture and verify data integrity through

the use of distributed ledger and smart contract.

This thesis is organized into five chapters, and it is structured as follows: chapter 1 is

the State of the Art and will also present the related works, chapter 2 will introduce
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our architecture, highlighting the main design choices, chapter 3 is a description of our

use case, chapter 4 will detail how we built part of the designed system, while chapter

5 will show the performance and evaluation analysis of the tests applied to the different

blockchains.





Chapter 1

State of the Art

In this chapter, we will introduce the main features and technologies of our trusted

location-proof architecture, which will allow users to acquire and issue location-proof in

a secure manner. We will also explore the related works available in this field. We will

start by talking about Location Based Services that rely on user location to offer services

such as navigation apps, Intelligent Transport Systems [8], where vehicles broadcast their

current locations along with other information to avoid issues (such as collisions and

congestions), or ride-sharing.

1.1 Location Based Services

Location Based Service (LBS) is software that performs functions using the geo-

localization of the user or context-aware information. The majority of Location Based

Services rely on the user’s current location offering services, for example, a navigation

map, traffic updates, weather forecasts, and proximity-based marketing. The position of

the user, computed for example through GPS coordinates 1, is shared with a server and,

1GPS (or Global Positioning System) is a free service with planetary coverage which uses up to 72

satellites, owned by the United States and launched in 1978. Some of its drawbacks consist in being a

5



6 1. State of the Art

in turn, the server sends data to the users or enables some service [9].

The position that a user transmits to an LBS is computed by his own device and, for this

reason, a malicious user can lie about his position by having his device transmit a location

of his choice. Moreover, most of these types of location-aware applications offer some re-

wards or benefit to users who prove to have been in a given place at a given time, and, for

this reason, some problems can arise when a malicious user try to submit a fake location

to illegally obtain the reward [10]. From this emerges that these types of applications can-

not trust solely the users’ devices’ location transmitted because they have the incentive to

cheat.

Figure 1.1: Fake location spoofed

by Ubers’ drivers.

For example, Zhang et al. [11] found that 75% of lo-

cation check-ins on Foursquare are fake. Foursquare

[12] is a location-based social network that, until

2014, allowed users to obtain virtual rewards such

as a badge when they sent their current location

through check-in operation.

Regarding the manipulation of locations in naviga-

tion systems, attackers can divert valuable vehicles

or target persons to unsafe areas [13]. For example,

in 2012, Australian police rescued tourists directed

by an erroneous Apple Maps navigation application

to a life-threatening desert with no water supply and

extremely high temperatures [14].

A similar issue, where location has been spoofed,

happened with Uber in 2017 [15].

In particular, Uber drivers spoof their location in line at the airport to enter its FIFO

single point of failure, don’t provide proof of origin, don’t provide indoor localization, and being unreliable

because of missing authentication.
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Queue. However, the driver wasn’t actually there, instead, he took trips and made money

with other consumers. In figure 1.1 is shown the app spoofs the location: for example,

user C is parked on the exit ramp of the airport and user B appears to be placed in the

employee parking lot within a gated fence, so neither of them is actually there.

Again a customer-loyalty reward system could be designed, in which some discounts may

be offered to users who frequently visit the shop.

An enormous number of fields can benefit from this type of application, such as collab-

orative crowd-sensing or smart cities.

Therefore, what becomes necessary is a new strategy that allows the user to prove their

current or past locations, which means proving that he was where he claimed it and when

he claimed it. Again, a clear definition of this task can be found in [16], where the chal-

lenge is defined as "proving of being present at a certain location, at a certain time with

a certain situation awareness to perform certain actions, while having the incentive to

participate".

1.2 Proof of Location

The generation of proof became necessary to increase location assurance and pre-

vent fake-location submissions by malicious users, that cheat the system by obtaining

incentives. We can define the proof-of-location as a digital certificate that certifies the

position of a user at a specific time [17] and can be used as evidence. Saroiu et al. defined

a location proof as "a small piece of meta-data issued by a component of the wireless

infrastructure (e.g., a Wi-Fi access point or a cell tower) in coordination with a mobile

device" [18].

However, this is not the only solution because infrastructure-independent or peer-

to-peer approach can be designed to generate proof-of-location. In APPLAUS project

[5], the proofs are mutually generated by nearby users, called witnesses, instead of relying
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on the access points or other types of infrastructure.

According to Saroiu et al., [18] four main location-proof properties can be identified:

• Integrity: nobody can modify a location-proof issued from someone: Location

Proofs (LPs) must be personal and mapped to one single identity;

• Non-transferability: once a location-proof is issued, it cannot be transferred from

one user to another;

• Trustworthiness: self-reported location-proof should not be trusted and it has to

be validated by someone, i.e., a witness;

• Non-repudiation: once a location-proof has been generated, it can not be denied.

An example of Location Proof (LP) is shown in the code listing below 1.1, where the

issuer’s Private Key is used to sign the whole proof.

1 <locationproof >

2 <issuer > Public Key issuer </issuer >

3 <recipient > Public Key recipient </recipient >

4 <timestamp >Timestamp </timestamp >

5 <location >

6 <latitude >...</latitude >

7 <longitude >...</longitude >

8 </location >

9 <signature >Issuer Signature with his Private Key</signature >

10 </locationproof >

Listing 1.1: Example of a proof-of-location.

1.3 DHT and Hypercube

Regarding the storage of the data, different strategies could be designed. Since we

want to guarantee a great decentralization, avoiding issues such as the single point of
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failure, we opted to integrate a Distributed Hash Table in our system.

A Distributed Hash Table (DHT) is a structured peer-to-peer system, responsible

for storing key-value pairs, formed by nodes organized with different topologies: a ring,

a binary tree, a grid, etc [19].

As the authors claim, one of the characteristics of a structured peer-to-peer system

is that each node is uniquely associated with an identifier, the key, and its hash is used as

an index to retrieve the contents of the node itself. That means: key = hash(identifier).

The topology that characterizes the DHT, is used to look-up the data efficiently: any

node can be asked to look up a given key and route the lookup request to another node

if he is not responsible for the given key.

In this project, we decided to use a DHT with a hypercube topology, where each node

is responsible for a specific keyword set and the related content, it speeds up the look-up

operations by reducing the number of hops needed to locate contents [20] compared to a

classical DHT.

A hypercube is an n-dimensional cube formed by a fixed number of logical nodes, i.e.,

2r, where r is the number of dimensions of the hypercube. The ID associated with

the nodes of the hypercube is an r-bit string obtained from a one-way hash function,

applied to the keyword that the node is responsible for, with r digits, i.e, the key for an

r-bit string equal to 1010, with r = 4, is 10 2.

The hypercube structure speeds up the look-up operation because the difference between

the nearby nodes is solely of one bit, and it also allows complex query optimizing the

routing by specifying the maximum number of hops permitted to locate a specific node

and its content. For this reason, during the look-up operations, the node will forward the

request to the closer nodes if he is not responsible for the key search. An example of the

hypercube is represented with the image 1.2.

2If we convert the binary number 1010 to decimal we obtain the key 10.
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Figure 1.2: A graphic example of a hypercube with r=4, 4 dimensions [1].

1.3.1 Location Encoding Systems

The use of latitude and longitude by GPS and Location Based Service, are fundamental

to identify and represents a specific location. However, they are challenging to use, they

are too long, and, if swapped between them, they represent a completely different position

[21]. A Location Encoding System can solve the problems that arise with the use of the

latitude and longitude coordinates, associating an alphanumeric, but short, string to a

geographic location. Some of the technologies available are:

• Geohash: proposed in 2008, allows encoding latitude and longitude into an al-

phanumeric string. The Geohash code represents an area where its size depends on

the number of digits in the Geohash string which can be composed using 32 charac-

ters (0-9/A-Z excluding "A", "I", "L" and "O"). One of its disadvantages is that a

single location can be associated with more than one Geohash string, for example,

"c216ne4" and "c216new"[22] decode to the same coordinates "(45.37, 121.70)";

• Open Location Code [23]: is a technology developed by Google and released to

public in 2014 that allows to generate tiles, partitioning the Earth’s surface and

then associating each of these tiles to a specific and unique code. OLC is a string

from 2 to 15 characters long 3, used for identifying an area on the Earth and its
3The default OLC length is 10 digits and its precision is 13.9 meters.
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size will depend on the number of digits in the strings and is built encoding latitude

and longitude. The set, to build a string, is made up of 20 characters which are:

"23456789CFGHJMPQRVWX".

In this project, we will design a hypercube where the keyword set is associated with the

user’s location using the Open Location Code technology and the reason can be found in

its simplicity, it guarantees privacy, and because it is in the public domain.

Going into the specifics, we will use a dual encoding, converting the location of the user,

with a latitude-longitude format, firstly to the respective Open Location Code and then

to the r-bit string. The latter consist of a particular type of logical transformation that

allows the OLC to be converted into the r-bit string which will be used to represent the

node’s ID. This conversion was presented in the work proposed by Zichichi et al. [24]

and shown in figure 1.3. As it is possible to see from the image, we tried to convert the

Figure 1.3: Encoding process from OLC to r-bit string, with r=6.

OLC "6PH57VP3+PR" to the corresponding r-bit string with r = 6, and the first step
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of this algorithm is to split the OLC into a specific number of pieces. To do this, we

followed the guidelines located inside the Open Location Code repository that suggest

using zeros as padding symbols 4. In our case, the generated segments are: 6P00000000,

00H5000000, 00007V0000, 000000P300, 00000000PR. Then will be necessary to compute

a hash function on every split piece and execute the modulo operation where its result

will highlight which bit "turn on" in the r-bit string. Finally, the final result will be

obtained by computing the XOR (⊕) between every bit string. In our case we will obtain:

(000100⊕ 010000⊕ 100000⊕ 000100⊕ 010000) = 110100.

1.4 Blockchain layer

As we shall see in the related works section, some Proof Location systems adopt a

Blockchain-based approach, i.e., in the project proposed by Brambilla et al. [6] or FOAM.

But what is a blockchain?

Blockchain is an implementation of Distributed Ledger Technology (DLT) where a shared

ledger, a database that contains all the transactions, is kept by the nodes/participants

of the network. Moreover, there is no centralized node or authoritative manager in the

blockchain network and it is immutable.

According to Yang Lu [25], blockchain consists of immutable decentralized shared ledgers

that can group data blocks into specific data structures in chronological order, and pro-

vide secure, transparent, anonymous, decentralized, low-cost, and reliable data or asset

transactions in a decentralized network.

One of the purposes of the blockchain removes the intermediary which is empowered to

manage the transactions between two users, using a protocol that allows the two entities

to transact directly [8] ensuring immutability of data, authenticity, confidentiality, and

transparency.

4According to [21], "zeros in Open Location Codes must not be followed by any other digits".
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Nowadays, many blockchains exist and they are different in purpose, mission, and vision.

An example consists of the use of blockchain to keep track of the transactions of specific

cryptocurrencies ensuring security, tamper-proof, and transparency, i.e., Bitcoin tries to

build a decentralized currency system. In particular, the problem that Bitcoin wanted to

solve is the double-spending problem: a user that only has €1 can not send €1 to two

different people.

A blockchain is composed of blocks, which contain transactions, connected to each other

through the use of the hash function. In particular, a specific transaction is definitely

added to the blockchain solely if it has been inserted in a block and this block has been

connected to the last block of the chain. After a block is added to the ledger, it is compu-

tationally infeasible to tamper with its transactions. Therefore, it is not a good strategies

store sensitive data on the blockchain and it is not even suitable for recording heavyweight

data.

One of the main challenges that an efficient blockchain needs to face up [26] concerns the

blockchain trilemma, proposed by Vitalik Buterin, and which it claims that we can

have, at the same time, only two of the following properties 5:

• Security: protection against Sybil attacks (51% takeovers) or DDos attacks, etc.;

• Scalability: blockchain should be able to process thousands of transactions in a

second;

• Decentralization: the network has to be composed of many nodes and without a

central authority.

Another challenge consists in identifying a way and a user that will be responsible to add

the next block to the blockchain. Specifically, some users, called miners, are empowered

to add a new block through a distributed consensus algorithm that allows them to

reach an agreement on which block to add. The consensus algorithm will select the user
5One of the three properties is compromised for the sake of the other two.
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that will add the next block.

The main consensus algorithms are proof-of-work and proof-of-stake.

The most famous algorithm, the proof-of-work, is used by Bitcoin blockchain, where the

miner empowered to add the next block is the one that has solved complex mathematical

puzzles that require a lot of computational power. Moreover, regarding proof-of-work,

since two miners can add two blocks at the same time, we could have a fork of the chain.

In this case, the longest of the two chains is considered authoritative. Specifically for

Bitcoin, "a transaction should not be considered as confirmed until it is a certain number

of blocks deep" [27], so, users have to wait a lot of time and check if their transaction

remains on the authoritative chain or not 6.

The proof-of-stake, introduced for the first time on Bitcointalk [28], allows the creation

of new blocks only if the user stake/holds a minimum amount of coins where the

stake is the number of network tokens that a user is willing to set aside [29]. There is no

need for specialized hardware or expensive cost for electricity. In proof-of-stake, we don’t

have miners but validators 7 which deposit their network’s currency to participate in the

creation of new blocks. If the validator will select wrong and fraudulent transactions, a

little bit of its stake will be confiscated as a form of penalty. We can have different PoS

(proof-of-stake) versions which are:

• Bonded PoS: users put their money in a table (bond), and nobody can touch them.

They will select block and if they misbehave, their money will be confiscated;

• Delegate PoS: Empower special users to choose the next block;

• Pure PoS: A cryptographic self-selection algorithm decides which node became
6On Bitcoin is recommended wait that at least 6 blocks have been confirmed. The average Bitcoin

confirmation time is 10 minutes for block and, for this reason, a transaction may require more than an

hour to be definitely confirmed.
7In addition to storing the ledger, validators have to update it reaching an agreement on which

transactions must be added to the next block.



1.4 Blockchain layer 15

"miners".

Blockchain can be divided in:

• Permissionless: they are public and everybody could participate in the network

by writing new transactions, creating their own node, or reading the ledger. There

is a lack of a central authority, i.e., Bitcoin or Ethereum;

• Permissioned: only some well-defined users can interact with the ledger. An

example is the blockchain Hyperledger Fabric [30].

We decided to realize our Decentralized Application on two public blockchains at the

same time: Ethereum and Algorand. The choice fell back on this technology because

of its characteristics such as reliability, security, transparency, fast transactions, and the

existence of smart contracts.

Smart contract concept was first proposed in the 1990s by Nick Szabo as a computer pro-

tocol designed to propagate, verify, and execute contracts [31]. Considering the blockchain

context, a smart contract is an executable program stored in the blockchain that defines

a specific set of rules that must be followed. If we want to run a smart contract, it has

to be called through the use of blockchain transactions that can trigger and execute the

program in a distributed way. Again, since smart contracts are stored on the blockchain,

their execution and outputs can be traced by everyone.

Finally, Algorand and Ethereum are public blockchains and for this reason can have

many advantages such as complete decentralization, total transparency, more security

(more users can verify the transactions), and self-sustainability.

1.4.1 Ethereum

Ethereum, introduced by Vitalik Buterin in 2013 and launched in 2015, is a technol-

ogy for building apps and organizations, holding assets, transacting, and communicating
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without being controlled by a central authority [32]. It follows a permissionless approach

and has its own cryptocurrency 8 named Ether (ETH) which can be used to pay services

or network fees.

Although either Bitcoin or Ethereum allows digital payments without third parties, the

latter is a "fully fledged Turing-complete programming language" [33] that enables devel-

opers to build and deploy decentralized applications on its network leveraging on smart

contracts 9. On Ethereum, these programs are run by a virtual computing environment

called Ethereum Virtual Machine (EVM). At the writing time, Ethereum network is

composed of over 8,000 running nodes [34] that synchronize their state and act as a single

machine and, each of them runs an instance of EVM.

1.4.1.1 Ethereum Virtual Machine

Ethereum Virtual Machine is the virtual environment in which all Ethereum ac-

counts and smart contracts live, and which specifies changing state rules. It hosts the

piece of software empowered to verify the validity of transactions and manages network

security. When we talk about the Ethereum node, we are referring to the running version

of that software. EVM can manage two types of Ethereum transactions:

• Contract creation: when a contract is created and deployed 10 on the network;

• Message call: if addressed to a contract, allow to execute its bytecode.

Users have to pay for the amount of gas that is consumed by their transactions because

each operation has a cost, the most complex is the smart contract, most expensive is its

cost.
8Currency exchanges can be carried out without a third party, i.e., an intermediary/mediator.
9Examples of smart contracts could be lending apps, decentralized exchanges (DEX), insurance, crowd-

funding apps, etc.
10Deploying a smart contract is a process of pushing the code to the blockchain. A specific and unique

address will be assigned to the on-chain contract and the code will be immutable.
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The most high-level language to write Ethereum smart contracts is Solidity, however many

other languages exist.

1.4.1.2 Consensus algorithm

On September 15th, 2022, Ethereum’s consensus algorithm switched from proof-of-

work to proof-of-stake (PoS) because it is more secure, less energy-intensive, and allows

new and better-scaling solutions compared to the previous proof-of-work architecture.

The PoS algorithm allows nodes to stake Ethers into an Ethereum smart contract and act

as validators 11, that means checking that new blocks propagated over the network are

valid or they can create and propagate new blocks. The validators’ funds located inside

the smart contract will be destroyed if the validators misbehave.

Specifically, a validator is randomly selected to be a block proposer every 12 seconds, a

slot, and will be responsible for creating a new block and propagating it on the network.

Then a random committee of validators is chosen, and they will be empowered to vote

to determine the validity of the proposed block.

1.4.1.3 Gas fees

To avoid malicious users from spamming the network, creating infinite loops, or useless

code operations, Ethereum is gas fees based which means each op-code is associated with

a specific amount of gas cost ensuring the termination of the computation. Gas prices are

denoted in gwei, giga-wei, which are 10−9 ETH, each gwei is equal to 0.000000001 ETH.

The gas fees, paid in Ether (ETH), are the cost that users pay for each transaction (call

to smart contracts included). According to Ethereum.org, "gas refers to the unit that

measures the amount of computational effort required to execute specific operations on

11Validators nodes have to stake at least 32 Ethers. If new blocks from peers on the consensus network

are received, a validator has to re-execute the transaction inside the block ensuring its validity and

propagating its vote (an attestation on the truth of the block).
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the Ethereum network" [35]. Since the initial version of the consensus algorithm was the

proof-of-work, the gas fees were introduced to compensate the miners for their work done

(such as the use of expensive hardware or mining farm). In the Ethereum proof-of-stake

version, the fees will be distributed to the users who stake Ethers.

The Ethereum fees can be calculated as:

gasFee = (base_fee+ priority_fee) ∗ units_of_gas_used (1.1)

The base fee, determined by the network itself, is indicated by each block and is the

amount of gwei that will be removed from the circulation supply ("burned"). In par-

ticular, the base fee depends on the amount of gas used for all the transactions in the

previous block and can increase by a maximum of 12.5% per block.

The priority fee is optional and determined by the user. The higher the priority fee, also

called "miner tip", the faster will be the transaction goes through because it incentives

miners to elaborate your transactions instead of others.

It is possible to add a gas limit, very useful during the smart contract development,

which is the maximum number of units of gas that users are willing to pay. In particular,

Ethereum requires setting a maximum number of computational steps that each transac-

tion is allowed to take, and if execution takes longer computation is reverted but fees are

still paid.

If the network is very busy, the resulting transaction costs will be higher, which means,

the same blockchain will have variable fees depending on the congestion of the network.

This feature leads the blockchain to have very high gas fees as it happened in May 2022 12

when gas prices rose to unprecedented levels, hitting 1261 gwei of the base fee and making

users pay even 2.6 ETH, or $6500, to 5 ETH, or $14000 as gas fees. In the image,1.4 we

can see the amount of gas required for some specific operations. For example, suppose

that the base fee is equal to 10 and the priority fee is 2, making a transaction can cost
12ETH gas price surges as Yuga Labs cashes in $300m selling otherside NTFs: https://

cointelegraph.com/news/eth-gas-price-surges-as-yuga-labs-cashes-in-300m-selling-otherside-nfts.

https://cointelegraph.com/news/eth-gas-price-surges-as-yuga-labs-cashes-in-300m-selling-otherside-nfts
https://cointelegraph.com/news/eth-gas-price-surges-as-yuga-labs-cashes-in-300m-selling-otherside-nfts
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Figure 1.4: Ethereum gas costs [2].

(10 + 2) ∗ 21, 000gwei = 252, 000gwei or 0.000252 ETH.

1.4.1.4 Scaling

Smart contracts allow Ethereum, and all the other blockchains that support them, to

host services that are typically offered by applications like banks or trading platforms,

but, to do that, they have to be scalable to millions of users. However, Ethereum has

some scalability issues because, as shown by Bez et al. [36], it respects the blockchain

Trilemma renouncing to scalability and opting for security and decentralization. This
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type of issue can lead the consensus network to have a limited transaction throughput.

To overcome the blockchain Trilemma and ensure all three properties, Ethereum can

adopt strategies such as sharding [37], rollups, sidechain and layer-2 [38] which allow a

significant increment in the scalability 13.

For example, Polygon [39] 14 blockchain is one of the many layer-2 solutions, that is

an overlay network that improves some aspects of the Ethereum blockchain. One of the

features of layer-2 is that they can be considered an off-chain solution, that is they derive

some properties such as security from the Ethereum mainnet but, at the same time, im-

plements a new blockchain introducing improvements. Compared to Ethereum, Polygon

allows low fees, and high transactions per second 15 without sacrificing decentralization

and security.

1.4.2 Algorand

Figure 1.5: Algorand logo.

Algorand, [40] 1.5, is an open-source project and a

distributed public ledger introduced by Silvio Micali in

2017 and deployed in 2019. Micali et al. decided to

build Algorand because they supposed that blockchain

was inefficient to be managed, i.e., Bitcoin required a

lot of computational effort, concentrating power in few hands 16, it had scalability prob-

lems and it was slow because each block is generated every 10 minutes. As we shall see,

Algorand guarantees all the three properties of the blockchain Trilemma without compro-

mising or without adopting layer 2 solutions 17.
13The switch from proof-of-work to proof-of-stake allows Ethereum to be more scalable.
14Its first name was Matic network but in 2021 it was rebranded.
15Polygon can execute up to 65,000 transactions per second.
16A large amount of energy is needed to create a new block and this is the reason why Bitcoin is not

entirely decentralized. There are few mining pools that have enough energy, although Bitcoin supposed

that malicious users do not control the majority of computational power.
17At the writing time, Algorand is a layer 1 solution.
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According to Micali’s work, Algorand uses a cryptographic function to automatically de-

termine, leveraging on the previous block, the leader, a user that will propose the next

block, and the verifier set, in charge to reach an agreement on the block submitted by

the leader. Both leader and verifier sets are randomly chosen among the set of all users,

reducing attacks from malicious users.

Since malicious users could corrupt leader and verifiers by suggesting a block to propose,

Algorand ensures that both leader and verifier set secretly learn of their role but they

are also able to prove their role to everyone using a credential. When the leader proposes

the block and propagates his choice, it will be too late for a malicious user to influence

the selection of the new block. As we shall see, Algorand assumes that the amount of

money held by honest people, users that run bug-free software, is above 2/3 of the total

Algorand’s monetary value.

Algorand reaches consensus on a new block with low latency thanks to its agreement

protocol 18 and the probability of having a fork is minimal 19 because each block is safely

final as soon as it enters the blockchain (as opposed to Bitcoin).

According to [41], Algorand has three challenges that have to face up:

• Avoid Sybil attack: creation process of many pseudonyms aimed at influencing the

agreement protocol. It is addressed by selecting users considering their amount of

stake as weight;

• The Algorand agreement protocol must scale to millions of users: it is obtained

through the use of a randomly chosen committee;

• Algorand has to continue to operate even if an adversary disconnects some of the

nodes.

18Algorand uses a new Byzantine Agreement protocol to reach a consensus that has been modified by

Micali et al. [40]. One of the advantages of this protocol is that it can scale to millions of users.
19According to [41], an attacker has to control less than 1/3 of the Algorand’s monetary value.
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1.4.2.1 Consensus Algorithm: Pure Proof of Stake

Algorand is a layer 1 and pure proof-of-stake (PPoS) blockchain, that means, in-

stead of relying on solving complex crypto-puzzle 20 and consumes a lot of energy, it

improves security and power efficiency across the network by limiting miners to vali-

dating transactions proportional to an ownership share [41]. Using proof-of-stake instead

proof-of-work reduces the block confirmation time, which means reducing the time needed

for a transaction to be confirmed. This can also be applied with pure proof-of-stake,

but Algorand’s network is not monopolized by stakers with high amounts of tokens [29]

as instead happens for the blockchains that use the proof-of-stake (not pure) because in

PPoS the protocol selects users randomly, irrespective of their stake. That means, pure

proof-of-stake does not require a minimum amount of tokens during the staking phase

and, in addition, there is no penalty if a user misbehave.

The new proposed block will be validated only if the majority of stakes are agreed on it.

Since specific and expensive hardware is not required, proof-of-stake blockchains can be

composed of many nodes, which can improve the network’s decentralization.

The users that act as validators will receive a reward proportional to their stake. The

reward will be distributed using Algorand’s cryptocurrency that is Algo.

The block validation phases are shown in figure 1.6. Specifically, the pure proof-of-

Figure 1.6: Algorand block validation [3].

20The success probabilities to solve the puzzle depend on computational power only. This leads to

strong competition between miners.
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stake mechanism is based on computing a Verifiable Random Function [41] [42], it is

executed for each block and can be summarized as follow:

1. A user, the leader, is randomly chosen and learns secretly its role executing a secret

crypto-graphic sortition 21 (users are selected at random and weighted using their

stake). In addition, since an account can own a big amount of money and, for this

reason, can be chosen frequently, the sortition algorithm returns a parameter j that

will indicate how many times a user was chosen;

2. A committee, the verifier set, is randomly chosen and learns secretly their role 22;

3. The leader chooses its block to propose and propagate its choice on the network

along with his credential;

4. The committee certified the chosen block reaching an agreement.

Thanks to the PPoS consensus protocol, Algorand can satisfy all three properties of the

blockchain Trilemma.

1.4.2.2 Algorand Virtual Machine

As we have seen for Ethereum, also Algorand has its own Algorand Virtual Ma-

chine (AVM) that can be run on each node [43] 23.

21Sortition is implemented using Verifiable Random Functions which will return a hash and a proof

(the credential).
22The function will indicate if a user is chosen, returning a short string that proves this user’s committee

membership to other users.
23At the time of writing, Algorand has over 1600 running nodes [44], and the minimum requirement to

run an Algorand full-node are shown here [45].
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Figure 1.7: Teal exam-

ple.

AVM contains a stack engine that evaluates smart contracts

that, once deployed, anyone can call through an "application

call" to the contract and which will be evaluated by the AVM.

In addition, to evaluate the smart contracts, the AVM is em-

powered to check the smart signatures. The difference between

smart contracts and smart signatures is that the former is state-

ful 24, the changes will be recorded to the blockchain if the call is

successful, while the latter is stateless, they are used to approve

spending or asset transfer and its logic is submitted with the

transaction. The AVM interprets an assembler-like language

called TEAL (Transaction Execution Approval Language).

However, the Algorand ecosystem offers other high-level lan-

guages that can help the developers. One of them is PyTeal, a Python library that

allows facilities for the development, and Reach, another high-level language, similar to

Javascript which, when compiled, can produce the Algorand and Ethereum smart contract

source code which are respectively TEAL and Solidity.

1.5 Interplanetary File System

Interplanetary File System (IPFS) is a protocol and implementation of Distributed

File Storage, launched in 2015, that allows peer-to-peer file sharing using a distributed

system. Everyone is given the opportunity to become a node of the network and start

uploading/downloading files. The IPFS protocol assigns each object to a unique address

called Content IDentifier (CID) built hashing 25 the file content.

24Stateful contracts are applications that run on the chain. They are used when we want to store values

on the chain globally or locally after that a user option to the contract.
25The hash used is the SHA-256, source: https://developers.cloudflare.com/web3/ipfs-gateway/

concepts/ipfs/.

https://developers.cloudflare.com/web3/ipfs-gateway/concepts/ipfs/
https://developers.cloudflare.com/web3/ipfs-gateway/concepts/ipfs/
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The IPFS is built through the use of a DHT which is used to map each Content IDen-

tifier to the IP address of the owner. One of the disadvantages of IPFS is that it does

not offers incentives to users who decide to participate in the project hosting some file

and, for this reason, a specific object could disappear from the network if nobody decides

to host it.

1.6 Decentralized IDentifier

Today, identification and trust are a big issue on the internet. The majority of

online applications such as social media or finance services 26 need users to prove who

they are to gain access to the resources, using a username or e-mail as a unique identifier

on that specific platform. An example can be found in the Federated Identity where the

user gives his trust to a specific identity provider 27 such as Google with the benefits of

login into many different apps using Google as a primary source of identity. This can

lead to very potential issues: if the identity provider disables a user’s account, the latter

might not be able to access the other online services which he previously accessed using

that specific identity provider. Moreover, in Federated Identity, the identity provider is

at the center, so we cannot use our Google credentials to log in to every web application,

i.e., our bank account; that means credentials are not portable outside. For this reason,

another important task of this work is to verify the user’s identity without relying on a

centralized database or central authority. The new model of Decentralized Identity, also

called SSI (Self-Sovereign Identity), follows a user-centric 28 scheme, allowing users to

became the owner of their data and is based on Decentralized IDentifier and Verifi-

able Credentials [46], leveraging Blockchain and distributed ledger technology (DLT)

infrastructure.

26They can require a KYC (Know Your Customer).
27They guarantee identity for the user.
28User maintain control of his data.
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Figure 1.8: DID document example. The "id" is the en-

tity that the document describes.

Decentralized IDentifiers

(DIDs) [47] are a new type

of digital and globally unique

identifier, standardized by

W3C (World Wide Web Con-

sortium), where the DID

uniqueness is ensured by DID

methods [48] 29 and by the

DID design itself, i.e., the DID

document 30, shown in figure

1.8, which contains information for authenticating the DID owner. Specifically, through

the DID resolution it is possible to reach the DID document, stored in a verifiable data

registry such as a blockchain, starting from the DID itself [49] 31. So, the DID resolution

is the process that allows us to find DID documents using DID as a parameter. Accord-

ing to [50], instead of using a username or an email address as primary identifier, it is

used a DID, an alphanumeric string that represents who the user is, in a given context,

without giving trust to the specific identity provider. DIDs rely on cryptography, specifi-

cally, users can use a private key to prove control over a DID (as a password does for the

username). As we shall see in the next chapter, inside the General behavior section, the

authentication is the process that allows someone to prove its control on a DID.

29The DID method identifies where the DID resolution happens,i.e., it happens on bitcoin blockchain

it will be did:btcr.
30The DID document contains detailed information about the DID. It can specify the DID controller

which is the entity that has the authority to modify the document.
31More information about DID and its features at https://w3c-ccg.github.io/did-primer/.

https://w3c-ccg.github.io/did-primer/
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1.7 Related works

Since many different schemes could be used for location proofs, we will talk about

related works and their implementations/ideas.

For example, Zichichi et al. [51] proposed a use case leveraging on a decentralized archi-

tecture aimed at the development of novel services for Intelligent Transportation Systems

using Distributed Ledger Technology and Distributed File Storage to store and certify

crowdsensed information coming from vehicles on the road. They used IOTA ledger to

store the data while Ethereum was utilized to execute smart contracts.

The majority of related works, that involves the proof-of-location, focus on security and

privacy challenges, and only a few try to realize something truly decentralized. Gener-

ally, the location-proof systems are divided into two categories considering their system

architecture: centralized and decentralized verification approach. In the central-

ized systems there are databases, servers, or Location Based Services that can check the

proximity of a prover to a witness or are used to store the location proofs. Given their

architecture, this type of system could suffer from a single point of failure issue, making

the application insecure or allowing users to spoof their location easily. Nosouhi et al.

[10] assume that the LPs generation process could be slow in the case that a database

was adopted, above all when the user uses a long private key "since a prover device must

respond to m challenge messages that a witness sends to it, where m is the size of the

prover’s private key".

In the decentralized applications, the system could solve the issues above designing a

blockchain-based infrastructure. However, most proof-of-location systems are centralized,

i.e., they rely on servers to store location proofs, as said before.

Related works subdivide these categories into another two which are: infrastructure de-

pendent and infrastructure independent. For the generation and validation process

of LPs, the former could use a bipartite gathering approach while the latter a collaborative

gathering approach [17].
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1.7.1 Infrastructure dependent

In this type of system, usually, a trusted fixed access point (e.g Wi-Fi) or specific

hardware is employed to check users’ location and issues location proof. An introduc-

tion of location proof, using access points and which contains six potential applications,

published by Microsoft research can be found at [18]. However, they do not consider the

privacy issue. In the solution proposed by Saroiu et al. users can communicate with

access points or cell towers, requesting location proof.

Figure 1.9: FOAM logo.

Javali et al. [4] propose a centralized solution for generating

LPs that manage the verification process, leveraging unique

Wi-Fi signals. In this solution, the LPs are generated and

provided to mobile users through access points, which are con-

sidered trusted by default. Subsequently, a Location Based

Service will verify the proof and grant specific services if the

LPs are valid or not 1.10. One of the drawbacks of this solu-

tion is the expensive costs that should be incurred while dealing

with many access points.

Figure 1.10: Location-proof system with infrastructure-dependent approach [4].
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Another infrastructure-dependent project is FOAM [52] which is a decentralized open

infrastructure that is trying to use the concept of zone and zone anchor (a radio bea-

con), placed outdoors, creating a trust zone used for location tracking. FOAM is also

a project that uses Ethereum blockchain which allows it to become more decentralized

allowing users to contribute, and control when and with whom they share their personal

data. One of the core points of this project consists of the use of Crypto-Spatial Coor-

Figure 1.11: Use of CSC with FOAM.

dinates : a technology that uses the Geohash standard which ensures that any physical

location has a corresponding smart contract address that is accessible for decentralized

applications. Their mission is to provide tools that enable a crowdsourced map and de-

centralized location services such as replacing GPS by offering a new location tracking

mechanism. The former considers the users as a cartographer that can contribute by

adding a new point of interest to the map, and the latter use zone anchors, a set of at

least 4 radio beacons, to send signals to discover and connect with others nearby.

Another Ethereum-based project, that tries to solve the issue of spoofing the GPS po-

sition, proposed by Victor et al., [53] relies on the existing infrastructure of a mobile

network operator leveraging a vast network of cell towers. To apply this strategy,

the user must be equipped with a terminal or an IoT device that must be locatable in

terms of the network cells. In this way, leveraging the geographical coverage area of the
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mobile network operator, it is possible to indicate where the terminal must be placed.

Specifically, the authors of the article propose an approach to represent geofences using

Ethereum smart contracts, checking if the user’s position (using the terminal) is located

inside the virtual borders and then and trigger specific actions accordingly.

According to the authors, the smart contract cost for each grid cell is equal to 20,000

gas and geofence consisting of 100 grid cells leads to a total gas cost of 2,088,102 gas (also

considering other base and overhead transaction costs).

On September 28th, 2022, this would translate to 0.187 ETH 32 that means €250.69 33

or $240.23 34 to store a single geofence.

The authors compute the same analysis on August 16th, 2018 35 founding that the gas

cost for storing a geofence was equal to $1.89 on the main Ethereum blockchain.

In conclusion, storing a geofence with 100 grid cells on Ethereum today is no longer a

viable solution cause its expensive costs.

1.7.2 Infrastructure independent

According to E. Pournaras [16], decentralized systems can be used to design a more

informed and participatory collective decision-making utilizing the concept of witness

presence, and remain independent from the use of specific hardware/infrastructure. This

application is characterized by the presence of witnesses that usually use a short-range

technology of wireless radios, e.g. Bluetooth, that ensures the physical proximity of mobile

users nearby. The absence of access points allows the infrastructure to be cheaper than

the infrastructure dependent. Specifically, in an infrastructure-independent location-proof

system, the issues process of the location-proof is delegated to mobile users (witnesses)

32The ETH price is approximately €1334 for a unit.
33The base fee is equal to 8 Gwei and the priority fee is 1 Gwei.
34Exchange rate: €0.96 is equal to $1.
35Retrieving the historical data of August 16th, 2018 and using the pre London Upgrade [54] mech-

anism: the ETH price was $298.48.
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who are empowered to validate the prover’s location.

Since the witness is not trusted, a verifier user is required to verify the LPs generated.

Figure 1.12: Architecture of APPLAUS [5].

APPLAUS [5] (A Privacy-Preserving Lo-

cAtion proof Updating System) is one

of the pioneer infrastructure-independent

projects that proposed a centralized scheme

where, through a short-range communica-

tion method, users mutually generate lo-

cation proofs and report them to a server

1.12. The proof requested by the prover

is generated by a witness using a random

number, pseudonym 36, computing a hash

and signing using the witness Private Key 1.13. Then the proof will be sent to the central

Figure 1.13: Proof generation process in APPLAUS [5].

server by the prover which leads this project to be centralized cause it uses an untrusted

central server to store the historical records and other data, as said before. One of the

participants in this architecture is the Central Authority who knows the mapping be-

tween the Public Key and the real identity of the provers.

As shown in figure 1.12, the Central Authority will be queried by the verifier, passing

36To preserve users’ location privacy, the user’s pseudonym change periodically.
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Figure 1.14: Proofs of Location recorded on Blockchain [6].

the real identity of the subject which will need to be verified, and then the CA, after

authenticating the verifier, will convert the real identity to its corresponding pseudonyms

and retrieve the location proof from the server.

In the blockchain-based architecture proposed by Brambilla et al. [6], valid proofs of

location are recorded into blocks, which are then added to the end of the chain, and,

once confirmed by consensus, they cannot be changed 1.14. However, this solution is

vulnerable to collusion attacks because the protocol allows direct communication between

provers that could cheat the system. Since the location proof will be stored and verified

Figure 1.15: The generation process of LPs and diffusion [6].

using the blockchain 1.15, a central server is no more required.

The proof-of-location request 1.16a and response 1.16b of this architecture are shown

in the images. As we can see, every peer puts all known valid unacknowledged proofs

of location into a block 37 of the blockchain. As authors Brambilla et al. [6] wrote: "if

most peers add the block to the blockchain, then consensus is achieved, therefore proofs

37The block also contains the ID of the user that generated it and is signed with his Private Key.
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of location are made persistent. Otherwise, the block is discarded and not attached to the

blockchain." 38. Other checks will be made to ensure that nobody will cheat the system,

for example verifying that the proof-of-location inserted in a new block is not already

present in previous blocks of the blockchain, not broadcasting and discarding it. The

performances and results are focused on peers that try to cheat the system.

Another infrastructure-independent and blockchain-based solution has been proposed by

(a) Location proof request sent by Prover [6]. (b) PoL response sent by Witness [6].

Nosouhi et al. with the PASPORT architecture [55], where the main actors are the prover,

witness, and verifier empowered to assign the witness to the prover for the location-proof

generation. The authors claim that their system was Prover-Prover and Prover-Witness

collusion resistant, however, the verifier could not act in "good-faith" and misbehave.

Gambs et al. proposed PROPS architecture [17] which, although it follows a collaborative

approach, uses a single Location Based Service for the verification phase.

38The consensus algorithm is Proof of Stake using a pseudo-random to decide who will add the next

block.
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Chapter 2

Architecture Design

We tried to design the architecture of our Decentralized Application where its purpose

concerns the construction of a system that allows users to report specific areas, through a

collaborative approach. The nature of the report will be detailed along with the use-case

vision in the next chapter.

In the following sections, we will describe the design choices for this work, where the

main challenges concern the realization of a Proof of Location System and the De-

centralized Application (DApp). Through interactions with an off-chain structure,

the hypercube, our DApp will be able to retrieve values, the report information, and show

them to the users without authoritative servers, ensuring the truthfulness of the data in

the DHT. Indeed, one of the primary roles of the proposed Proof of Location architecture

is to realize a sort of "garbage in" empower to skim the input data before they are

entered in the hypercube. Without it, users will be able to insert all the data, truthful or

not, that they want without limits, overloading the system and taking up many resources

such as memory.

This led us to identify two main challenges of our Location Proof system: the former

consist of computing the Proof of Location in a decentralized manner, the latter is

to verify that data inserted by provers inside Smart Contracts are truthful Proof of Lo-

35
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cation allowing them to be inserted inside the hypercube. Although the first point has

been built to maintain its decentralization, the second is not completely decentralized for

two reasons: there is a Certification Authority and not everybody can act as a verifier.

So, an advantage of our decentralized architecture is that there is no need to employ

trusted access points to generate new location proofs. However, we did not focus on the

Prover-Prover 1 or Prover-Witness 2 collusions which have been considered by the related

works 3.

As we saw in the State of the Art chapter, there are some related works concerning this

argument designed with different characteristics; in this project we have oriented ourselves

towards these features:

• Decentralized System: using smart contracts, DHT, and IPFS for the storage of

data;

• Blockchain based: ensure more interoperability, security, transparency, and avail-

ability removing the single point of failure through the use of smart contracts instead

a single Location Based Service or server/database. The Blockchain-based strategy

will allow for building a reward mechanism aimed at users who participate in the

system;

• Infrastructure independent: we will use Bluetooth to communicate between

the prover and witness. We will not use sensors, Wi-Fi access points, or specific

hardware to generate proof of locations;

• Proof of Identity: the prover should prove his identity to the witness, and should

do this by avoiding central identity providers;
1Two distant Provers cooperate with each other in order to create a location-proof.
2This is one of the major challenges: a Witness is able to generate a location-proof for the Prover

even if one of them (or both) is not located in the location that he claimed.
3According to Nosouhi et al. [55], a reliable solution has not yet been proposed, even if some researches

have been carried out.
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• Permissioned verification: the verifiers are well known and not everyone can

become one of them.

In this work, we leverage the usage of a smart contract in order to temporarily store

the data that still have to be verified and which are sent by provers. Specifically, as we

shall see in the following sections, we decided to associate a different location for every

smart contract that could be created, storing the contract id inside the hypercube.

2.1 System actors

In the figure 2.1 we can see the general architecture of the system where the majority

of complex aspects are hidden, such as the specific information and proof details sent by

the prover to the smart contract, and the main actors are:

1. Prover: a user, with a mobile device, who needs to validate his or her location by

obtaining proof that can be verified;

2. Witness: the primary role is to compute and issue location proof (LP), sending

it back to the provers. We assume they are untrusted. Indeed, to ensure that LP

cannot be forged, the LP itself is signed by the private key of the witness that

generates the proof.

3. Verifier: these users have the task of confirming and verify the locations and other

information stored in the blockchain. They will also check that the signature of the

prover and witness are valid.

Moreover, another important actor is the Certification Authority; it is not represented

in the image to make it more readable. The Certification Authority is in charge

of indicating the verifiers. In a new version of this project, they will issue Verifiable

Credentials to the users that have a DID and are required for them. So, they know the



38 2. Architecture Design

Figure 2.1: The general architecture of the system.

mapping between the real identity and the pseudonyms (public keys) of users. Every time

someone wants to become a witness he will have to communicate his public key to the

Certification Authority. In this way, the witness public key will be added to the witnesses

list delivered to the verifier 4, necessary for the verification process . In addition, also

the verifier needs to be trusted by the Certification Authority. The use case diagram 2.2

shows the possible interactions between users and the system. The authority actor is not

shown because not modeled here.

As we can see, prover and witness have very similar behavior. Depict them separately it

was merely a design choice to better understand the system.

In particular, the prover will:

4We were inspired by the PASPORT architecture, proposed by Nosouhi et al. [55].
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Figure 2.2: Use case diagram: Proof of Location.

• Request for a DID generation: this was one of the first steps that had to be done

and allowed to obtain a DID. Every user, including the prover, should interact with

the smart contract empowered to generate and return a new DID 5;

• Insert Proof/Location/DID inside the smart contract: once obtaining the proof, the

prover will insert the data inside a specific smart contract;

• Search for location inside the hypercube: this is the first action that users do if they

want to start the verification process of their location. In particular, he will have to

5In a long-term vision of this project, this DID could be used to obtain Verifiable Credentials and

used them in this application



40 2. Architecture Design

search for his position inside the hypercube and get the associated contract address.

If not found, he will have to deploy a new smart contract and insert the ID and

location inside the hypercube;

• Request proof from the witnesses: if a prover wants to initiate the verification

process, he will have to ask witnesses to compute the proof for him. For this

purpose, the prover will broadcast his location to the users nearby;

• View users nearby: the application will show, using the Bluetooth, the users nearby
6.

In addition, witness is responsible for:

• Compute Proof: it consists of computations and cryptographic techniques that will

produce the Proof;

• Send Proof to the prover: witnesses, and provers that act as witnesses for other

provers, will send the proof to requesting users.

Finally, the verifier is tasked with:

• Insert funds inside the Smart Contract: the funds will be used to reward the provers

and witnesses. This is a design choice and does not exclude that this role will be

assigned to the authority in a new version of this project;

• Search a user and his Location/Proof: to verify someone, the verifier will query the

smart contract filtering by the user’s DID and obtain the data associated with it;

• Validate Proof and user’s location: this is a computation process that will be exe-

cuted by the verifier and allow him to insert the verified data inside the Hypercube.
6This feature could be implemented in future work.
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2.2 General behavior

In this section, we will show the general behavior of the system. Recall that to interact

with this application, the user must create a new blockchain wallet and generate a DID.

The first interaction comes from the need of the prover that wants his position confirmed

by neighbors. However, the prover must check if a smart contract associated with his

position already exists and will do this querying the hypercube 2.3 which will return

a contract address in case of a positive outcome, otherwise, the user will have to deploy

a new contract and insert the new contract address into the hypercube.

Figure 2.3: Sequence diagram of the initial phase.

Subsequently, as shown in the image 2.1, the prover will have to broadcast his cre-

dentials and location to the users nearby using Bluetooth technology which will ensure

that nobody will be able to spoof the position. Indeed, if someone wants to use a

particular service that requires a user’s location, i.e., the one described in our use case,

a witness will be empowered to validate the position. Firstly, the witness will compute
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Figure 2.4: DID authentication.

specific operations that will check if their position is equal to the one received through

Bluetooth. Moreover, they will also control that the credential obtained is truthful (in this

case we will use the Decentralized IDentifier for simplicity). The DID is unique by design

and will be used by the witness to authenticate the prover, using a challenge-response

authentication. Without a DID, the prover will be able to use false identities.

The authentication process that allows the prover to prove the control of the DID, is

shown in the figure 2.4 and works as follows:

• The witness obtains the DID document through the resolution of the prover’s DID;

• The witness generates and encrypts a random value using the public key (located

inside the DID Document) and sends the challenge to the prover;

• The DID owner decrypts the challenge by using its private key, which is associated

with the public key. Then the prover will send the response, containing the decoded

challenge, to the witness.

If everything goes well, the witness will compute the Proof, the signed certificate, and

send it back to the prover (we will enter it into detail in the next section). Once the prover
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receives the proof, he will insert the system’s required data inside the smart contract. In

this case, the data are composed of proofs„ DID, wallet address, the nonce used during

the creation of the proof, and the CID which will be used to retrieve the report’s data.

After that, the verifier will search for proof inside the smart contract and verify which

ones are truthful and with valid data. In particular, he will filter for a specific DID getting

the concatenation of associated values.

When the verifier validates a user and his proof, it will be up to the verifier itself to insert

the data inside the hypercube 7, ensuring the garbage-in.

2.3 Proof of Location

As we said before in the State of the Art chapter, two pillars of this project consist

in computing the Proof of Location for a prover and verify that the PoL and data

inserted inside the smart contract are valid and legitimate.

We recall that every user is described by a unique global identifier (Decentralized IDen-

tifier) and owns a Public and Private Key. The last one will be used to sign the proof by

witnesses digitally.

2.3.1 Compute and verify a Proof

When we talk about computing the proof we are referring to the moment when the

witness uses his Private Key applied to a hash function on prover proof. We saw that, if

we use an infrastructure-independent approach, the proof could be built in different ways

such as using pseudonyms and random numbers [5], so we will not stray too far from this

definition.

7To retrieve the data, the verifier will have to use the CID and download them from the IPFS.
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2.3.1.1 Build a location proof

In our work, the prover will broadcast, to a nearby witness, a request which contains

the prover’s current location, his DID, a random number, i.e. nonce, and the CID 8, as

shown in the figure 2.5 9. The data located inside the request will be used by the witness

Figure 2.5: Location Proof generation.

to build a location proof and then send it back to the prover 10.

All of the parameters contained inside the request will allow the verifier to check that

the proof/certificate is associated with a well-identified prover in a specific location, in a

range of some witnesses. This is why we decided to hash the DID but also the location:

if we hadn’t put this, the verifier wouldn’t be able to attest that the prover was in the

position that he claimed.

For example, the prover Alice will request a location-proof certificate from the witness

Bob sending her solely DID that will be used to generate the proof. Although both users

are located in Bologna, Alice could enter her proof in a smart contract associated with

a different location (Milan, Rome, etc.). The verifier may not be able to attest that the

8We suppose that the prover has already uploaded his report’s data on IPFS and obtain the resulting

CID.
9The signed proof, S(Proof), is obtained applying the private key of the witness to the proof.

10Recall that before starting to build the location proof, the witness must authenticate the prover using

the DID resolution, as described in the previous section.
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location of Alice is Bologna rather than Milan or Rome.

The same thing happens for the CID and the data associated with it: if we hadn’t put

and subsequently hashed the CID inside the request, the prover could modify the report’s

data using a new CID and submit them to the smart contract, tricking the system. In this

way, his proof would be invalid because associated with a CID different from the original.

As you can notice, along with the DID, location, and CID, we also hash a random number,

the nonce, to avoid replay attacks seen in [18]. This type of attack consists of re-

broadcasting an outdated location proof/certificate to nearby witnesses, and nonce is a

number generated by the witness and sent to himself by the prover to avoid this type of

attack. Usually, it is used in the infrastructure-dependent approach and it is associated

with the access point as a sequence number broadcast to the nearby provers.

2.3.1.2 Verify a location proof

After computing the proof, the data inserted by provers inside the smart contract have

to be verified by specific users, verifiers, that will subsequently insert the data inside the

hypercube, ensuring garbage in.

One of the main aspects is that the verifier owns a list of public keys of witnesses of the

system. This list will be delivered to verifiers by the Certification Authority every time a

new witness is added and will be used to check which witness has signed the proof of the

prover.

Generally, the verification process executed by the verifier is composed of two main parts:

1. Check that the proof is valid and has been signed by a known witness;

2. Check that the hash inside the contract, signed by the witness, is equal to the

hash of the concatenation of DID, location, nonce, and CID. If their equality were

confirmed, both the location and the CID would be the original declared by the

prover and attested by the witness through the generation of the proof.
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The figure 2.6 represents the architecture with more details regarding the verification

process.

Figure 2.6: Verification architecture.

In the figure 2.6, the verifier retrieves the signed proof, Sign(Hash(proofProv)), and

the hash of proof, Hash(proofProv) from the Smart Contract, step 4°, in addition to

retrieve the data such as the blockchain wallet of the prover 11 and the CID containing

the information that will be added to the hypercube (the title of the report, description,

etc.). The reason for this is motivated in step 7° which is the verification process where

the verifier checks if the public key, used to sign the hash of the proof, is valid or not

(reading in the list of witnesses public keys) 12.

The verifier will check that the hash located inside the smart contract, Hash(proofProv),
11It is located inside the proof as we have seen previously.
12As the prover’s Public Key may be in the witness list keys, the verifier will also check that the
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is equal to the hash result obtained by applying the public key of the witness on the

signed proof.

In particular, the signature of the proof is produced by the witness according to the

formula 2.1:

SignedProofProv = PrivateKeyWit(Hash(proofProv)) (2.1)

The formula below 2.2 is the verification process computed by the verifier, given that he

knows both the PublicKeyWit (the Public Key of the witness) and the Hash(proofProv).

Hash(proofProv) = PublicKeyWit(SignedProofProv) (2.2)

In this way, the verifier can attest to the integrity and validity of the signature, avoiding

possible fraudulent attempts by the prover to sign his own proof or cheat the system.

As shown in one of the architectural images 2.1, during the proof verification, the verifier

will retrieve data from the smart contract filtering by the prover’s DID.

2.4 Smart Contracts

One of the first smart contracts could be designed with the aim of producing DIDs for

users that required it, while the second category of smart contracts, the most important,

has the purpose of storing the prover’s data. In particular, some data that has to be

stored are the following:

• DID of the prover;

• Hash of the Proof;

• Signed Hash of the proof;

• Prover wallet address: used to return possible rewards;

Public Key of the prover, located inside the smart contract is different from the one of witness, and next

computing the hash using both.
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• The nonce used by the witness for generating the proof;

• CID (Content IDentifier) of the data.

In order to store data inside the contract, Reach’s Maps have been used. They allow the

storage of information using a key-value approach. However, the language is still under

development, so issues have been encountered while using this data structure. The image

below 2.7 represents the base content of the Map. The key of the Map is represented by

Figure 2.7: Content of the Map inside the Smart Contract.

a UInt 13, the DID of the prover 14, while the value is a concatenation of Bytes that will

be retrieved by the verifier and used during the verification process. Every key-value row

will be eliminated after the verification process.

The main Reach features designed inside the smart contract are:

• Participants: users that can interact with the program;

13At the writing time is not possible to use Bytes as a key type for the Map, especially if we want to

use our DApp on Algorand consensus network.
14We are aware that the UInt format does not represent a correct DID. However, we do this only for

testing purposes. Future work would include integrating the valid format of the DID inside the smart

contract.
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• APIs: functions that can be called by the frontend and which allow more than

one user to interact with our DApp asynchronously. They can modify the Smart

Contract’s state, so APIs have a cost;

• Views: functions that can send values from the backend to the frontend, showing

the current state of the smart contract. Since they only read the contract’s state,

their use does not cause any cost.

The main attributes and methods are shown in the image below 2.8: Since the smart

Figure 2.8: Main attributes and methods of smart contract.

contract’s memory is limited, we have designed a solution where every smart contract

corresponds to a specific location and it is possible to attach to them retrieving by the

hypercube.

For this purpose the factory pattern 15 comes to our aid as well as being safer for users:

its use allows the users to trust a single smart contract, the factory, and the source code

that will be used to deploy new contracts. As many smart contracts will have to be

15More information about the factory pattern with smart contracts: https://betterprogramming.pub/

learn-solidity-the-factory-pattern-75d11c3e7d29.

https://betterprogramming.pub/learn-solidity-the-factory-pattern-75d11c3e7d29
https://betterprogramming.pub/learn-solidity-the-factory-pattern-75d11c3e7d29
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deployed, the use of factory pattern avoids the risk that the code being changed, during

the time, causing damage to users.

2.4.1 The factory pattern

The idea of the factory pattern is to have a contract (the factory) that will carry

the mission of creating other contracts, which means spawning instances using a single

template. The use of this pattern be made considering the following reasons:

• Make the smart contracts management easy and allow them to be tracked and

monitored;

• Save gas fees on Ethereum consensus network;

• Improve the contract security.

This pattern will allow associating many locations to different smart contracts, guaran-

teeing more scalability considering; every area will have a specific smart contract.

The association between contract ID and location will be stored inside the hypercube

(more in the next sections).

2.5 Hypercube and IPFS

The hypercube was used to guarantee a more decentralization of the project, without

relying on a central server and compromising fast queries of big amounts of data. Since

storing the information on the blockchain could be expensive and time-consuming, some

strategies [8] suggest storing data inside Decentralized File Storage systems, such as IPFS,

and then referencing them using a Distributed Ledger Technology. However in this case

will be difficult to query the blockchain when looking for specific data.

For this reason, we decided to use a hypercube which will contain only the data that
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verifiers have validated. So, our application will be able to interact with the hypercube

and retrieve the information with the minimum time cost. Thanks to the topology of the

hypercube, objects described by similar keywords are managed by nodes that are close

together. The process described in the previous sections, the garbage-in, will ensure that

all the data inside the hypercube have been validated.

As you can notice from the figure 2.9, the keyword set of the hypercube, mapped to an

r-bit string, is represented by the Open Location Code and the content of the nodes is a

JSON that contains the following information:

• ContractID (or ApplicationID);

• Open Location Code in which the contract has been deployed;

• Array of CIDs.

When a user wants to insert information in a contract he must have to check inside

the hypercube if a contract associated with the user’s location exists. If not exists, the

user must deploy a new contract and insert its ID inside the hypercube along with its

location.

The CIDs array will be filled by the verifier after validates the proof and, since the data

stored inside the hypercube can require a lot of space, an option could consist of the usage

of IPFS. The CIDs will be used to retrieve report data such as title, description, or images

which are stored on IPFS. In particular, when the verification process is completed, will

be up to the verifier to insert the data inside the hypercube, acting as follows:

1. The verifier retrieves the data from the IPFS using the CID;

2. The verifier applies the encoding algorithm to the Open Location Code value 16,

generating the binary ID of the node responsible for that position;

3. The verifier contacts the node and inserts the prover’s data.
16The OLC value is retrieved by the smart contract.
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Figure 2.9: hypercube: the content of a node.

2.6 Open Location Code

The Open Location Code was used to reduce the usage of the hypercube’s memory

and improve the user’s privacy.

In particular, before broadcasting the location to witnesses, the prover will have to retrieve

its position using the GPS and convert it to the Open Location Code. As we said before,

although the GPS can be spoofed, Bluetooth will guarantee that two or more users are

nearby.

The substitution of GPS coordinates with an OLC will prevent the system from knowing

the exact position of the user, because, as we saw in the State of the Art chapter, the OLC

identifies an area and not a specific place. The size of the area will depend on the precision

of the OLC and, for this project, was used the default precision which corresponds to 10

digits of OLC that guarantees an area precision of 10.5m x 13.9m [23].

2.7 User privacy

During the design of the architecture of this project we treat personal data ensuring

the user’s privacy according to GDPR [56]. This is a difficult challenge to which bring a

practical solution in our specific context since the majority of DLTs must be transparent,
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our hypercube structure can be readable by everyone and also the IPFS’s data are readable

if the CID is known. In some cases, for example, it is possible to trace sensitive personal

information, and track user location over a range of time and for this reason some projects,

i.e., APPLAUS [5] use a pseudonym mechanism.

In our project, we don’t use sensitive information, except the DID and the OLC, that

are used to identify a user and an area where he is located. In addition, the DID and

the wallet address are not directly connected to the user identity and both could be

changed periodically. This mechanism is referred by GDPR as "pseudonymous" and it is

not considered fully anonymous and, for this reason, needs to be treated with caution.

Moreover, as described in the previous section, to guarantee better data protection, we

didn’t use the specific location of the user, but the area in which he was located.

2.8 Users rewards

This section is part of the strategy that will benefit users to participate in the project

and behave correctly. The amount of reward used will be in Algo tokens or ETH, re-

spectively the Algorand and Ethereum blockchain currency. Regarding Algorand, in the

future will be possible to create a new token and transfer it, using the Algorand Standard

Assets (ASAs), instead of using the native cryptocurrency.

Rewards will be transferred by the smart contract, which is funded by the verifier, to

prover in an automatic way when specific conditions happen. Indeed, in order to validate

new proof of locations, the verifier will have to insert a specific amount of Algos inside one

or more contracts and a prover will receive his rewards solely if the verifier will verify his

data, such as the proof, and insert them inside the hypercube. The purpose of this type

of incentive is to guarantee continuous participation in the project through the insertion

of new reports. The reward feature has been implemented and will be described in the

implementation chapter.
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We did not develop the code empowered to reward also the witnesses because they could

act as a prover and report a specific situation, receiving their reward. This design choice

was made to improve the number of reports associated with a location. Specifically, if a

prover asks for location proof from a witness, the witness itself will have the opportunity

to behave as a prover and ask, in turn, for a location-proof.

However, a new strategy could consist in send the reward to the witness after that verifier

has to check his signature placed on the proof.

2.9 Tools and languages used

The languages used to develop this project are Python, Javascript, and Reach. We use

technologies such as Docker, IPFS, and the hypercube implementation [57] and some

Python libraries, i.e, Matplotlib to display charts, Web3 to interact with Ethereum

blockchain, and AlgorandSDK.

2.9.1 Python

Python is one of the most popular high-level programming languages, released in 1991,

that can be used by a different set of people such as software engineers, web developers,

data engineers, etc. Python is object-oriented, dynamic, and interpreted language. In

particular, the executed code produces a bytecode that will be used by the Python virtual

machine.

2.9.2 Javascript

Javascript is a high-level language with a syntax similar to Java and interpreted means

it is directly executed. Usually, it is used to write dynamic web pages and add scripts

and interactive effects, but, in our case, we use the Javascript Modules through the use of
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the .mjs files extension, which allows us to display our frontend with the command line

interface.

2.9.3 Reach

Reach [58] is a high-level language 17, similar to Javascript, which allows the creation of

DApps on a specific blockchain chosen by the programmers. Reach is blockchain agnos-

tic: it is possible to run a Decentralized Application in different blockchains without code

change.

Figure 2.10: Reach

logo.

At the moment the available blockchains are Ethereum, Algo-

rand, and Conflux, but other blockchains are scheduled. In par-

ticular, the TEAL source code of Algorand’s smart contract and

the bytecode for Ethereum blockchain are located inside the in-

dex.main.mjs file, generated by Reach compiler 18.

One of the big advantages of Reach is the verification process on

the written code, figure 2.11. Indeed, the validity of some the-

orems will be checked by Reach itself to guarantee a safe and

efficient program. An example is the verification of token linearity property which re-

quires an empty balance when the smart contract terminates. When we compile our

Figure 2.11: Reach verification process.

DApp, Reach is empowered to produce the middleware and the smart contract defined

17Reach was released in 2020.
18Through Reach is it possible to obtain TEAL and Solidity source code respectively for Algorand and

Ethereum.
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inside the index.rsh file, managing the connection between the middleware itself and the

smart contract. All the complexity is hidden, and for this reason, the developers don’t

have to specify the details about how a smart contract works at a low level, but only its

rules. Indeed, in this project, users will interact with a frontend defined by index.mjs,

which interacts with a middleware that will have a specific interface defined by our Reach

program in the index.rsh file. The middleware is connected to the smart contract in the

way shown in the image 2.12.

Figure 2.12: Reach model.

2.9.4 Node providers

To deploy and interact with our smart contract, and consequently interact with the

blockchain, on the testnet, it was necessary to manually run a node for every blockchain

that we would think to use. However, this can require specific hardware and a lot of time

to sync with the network. The alternative would consist of the use of API online services,

also named node providers, which are: Purestake to connect to the Algorand network 19,

Infura to the Ropsten and Goerli networks 20, and Quicknode for Polygon 21. To use all

three services, we have to register to their online platforms and obtain the API key 22.

19Link to the Purestake website: https://www.purestake.com/.
20Link to the Infura website https://infura.io/.
21Link to the Quicknode website https://www.quicknode.com/.
22We used the free plan.

https://www.purestake.com/
https://infura.io/
https://www.quicknode.com/


Chapter 3

Use case: environment issues reports

Everything revolves around the environment and the social responsibility of people

that live on Earth.

The use case we propose is a Decentralized Application that tries to have a social impact

and help our environment and, for this reason, is sustainable and environment-friendly.

Initially, this DApp was designed to flag unusual behaviors towards nature and extended

to many other cases. Users can report a specific situation with different typologies, such

as a hole in the road, contaminated ground, waste on the street, a crowded place, cheats

in tows, etc., through their smartphone and a collaborative mechanism. Moreover, users

could receive a reward if their report is valid and truthful.

3.1 The Application

3.1.1 Crowdsensing

The data inserted inside the report are supposed to be textual data or images. Specif-

ically, users have to insert a title and description of the report, and there will be oppor-

tunities to take a picture of the situation. However, to correctly submit the report, the

user must use Bluetooth and ask for a location-proof generation from the nearby witness.

57
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After receiving the proof, the system will be empowered to store all the required data

inside an intelligent contract.

As we saw, this project uses many different technologies, from the Decentralized Identifier

to Decentralized File Storage and Blockchain. This application is thought to be executed

on the Algorand blockchain since it is considered carbon-negative [59], and committed to

the environment. However, other blockchains are compatible with the platform since, for

research reasons, we have chosen a blockchain-agnostic language. Thanks to this strategy,

we can use incentives for users to participate in the project with a token that can be dis-

tributed as a reward. The token is ALGO currency if the project is run on the Algorand

network, otherwise ETH for Ethereum or MATIC for Polygon.

3.1.2 Application features

Recall that the application retrieves the report from the hypercube and the algorithm

that will lead to the insertion is composed of the following steps:

1. Prover creates a request for LP to insert his data such as its DID and report’s data;

2. Prover sends the request for LP to the nearby witness using Bluetooth;

3. Witness check if the Prover is a neighbor using Bluetooth, computes the LP, and

sends it back to the prover;

4. If a smart contract for the prover’s location exists, then the prover inserts the LP

inside the smart contract. Otherwise, he deploys a new smart contract, inserts its ID

inside the hypercube, and finally inserts the information inside the smart contract;

5. The verifier interacts with smart contracts and checks if the LPs are valid;

6. If valid, the verifier will insert the report’s data inside the hypercube and the smart

contract will reward the prover.
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Summarizing, the application is composed of two main tasks:

• Allow users to insert a new report for a specific location;

• Display the valid reports associated with a location.

Concerning the first point, the prover will have to interact with the smart contract to insert

the report. Figure 3.1 1 shows the contract’s lifecycle of our Decentralized Application

through the blockchain explorer EtherScan. This exploration allows everybody to look up

the history of a specific wallet or contract address, also knowing important information

such as the current balance of the contract and the type of coins/NFTs held.

The image must be read from the bottom to the top, so firstly, the creator deploys the

contract, and then he inserts the information. Subsequently, some new users can attach

to the contract and publish their data, and then a verifier can insert funds and verify

some of the provers attached to the contract. The used testnet in the image is Goerli,

and the reward token is ETH. Indeed, as you can notice, the verifier funds the contract

with 0.4 ETH, a portion of which will be equally distributed to the provers during the

verification process.

Concerning the hypercube, objects described by similar keywords are managed by

nodes that are close together. In particular, the keyword set of the nodes is represented

by the locations, so two reports in two different, but close, locations will be stored by two

neighboring nodes.

The figure 3.2 shows how the application interacts with the hypercube and IPFS in order

to retrieve data and display them to the user. A user will query the hypercube filtering

by a specific location, and an array of CIDs, if exist, will be returned. The CIDs will be

used to retrieve the real reports from the IPFS.

1Deciding to not verify the creator of the contract was a design choice to highlight that it is not

mandatory to verify all the users.
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Figure 3.1: Goerli: creation, interaction and verification of a smart contract [7].

Figure 3.2: Display the data on the application.



Chapter 4

Implementation

As emerged from the previous sections, we have developed part of the presented archi-

tecture [60]. In particular, after designing the interaction between prover and witness, we

decided to implement the interaction between prover and smart contract. Developing the

proof generation, or interaction between the users and the hypercube, could be considered

as future works. However, in our case, we focused on more than just the realization of the

smart contract since we decided to test our work in three blockchains. For this reason, it

was necessary to write different "frontend" code to interact with the smart contract.

Specifically, we have two folders: one is dedicated to the complete execution of the prover-

contract interaction while the second, named test-suite, is used for evaluation and tests

analysis on the three consensus networks.

In this chapter, we will see the implemented details regarding how a smart contract works,

how the prover interacts with the contract, and how the test phases were built through

the use of simulation scripts.
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4.1 Smart contract

The smart contract has been developed using the Reach language and the code is

located inside the index.rsh file which is responsible for defining the participants and the

rules of the contract.

In our project, we used the following Reach features: Participants, Views, APIs and

ParallelReduce.

4.1.1 Participants

Participants are defined with an interface, figure 4.1, and we can refer to them as the

users that can interact with the program. A participant is defined in the backend: Partici-

pant(participantName,participantInterface) and the ”participantInterface” is implemented

by the frontend.

1 const Creator = Participant(’Creator ’,{

2 ... hasConsoleLogger ,

3 position: Bytes (128) ,

4 did: UInt ,

5 data_inserted: Bytes (512),

6 reportData: Fun([UInt , Maybe(Bytes (128))], Null),

7 reportVerification: Fun([UInt , Address], Null),

8 issueDuringVerification: Fun([UInt], Null),

9 });

Listing 4.1: Participants interface.

The snippet of code shows that we have solely one participant which is the first prover

that arrives in a specific location and acts as the creator of the contract. The other provers

will act as attachers and, although they can be considered participants, their interactions

are managed using the Reach APIs.

Variables and functions are defined inside the interface and implemented by the frontend.
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Our variables are: position, required to deploy the smart contract together with the DID

of the creator did and his data, data_inserted. In a real use case, the DID should be of a

Bytes type, but at the actual state, Algorand does not support indexing of Map with key

type differs from UInt 1. The function reportData() is used to log when some users insert

the data inside the contract; reportV erification() is used to report when a verification

success and issueDuringV erification() is used when a verification fails.

4.1.2 APIs and Views

APIs are functions that can be called by the frontend and allow users to interact with

the contract asynchronously; this type of behavior would not be possible if we represent

attachers as participants. We developed two types of APIs : one to allow the attachers to

interact with the contract and the other dedicated to the verification process executed by

verifiers.

1 const attacherAPI = API(’attacherAPI ’,{

2 insert_data: Fun([Bytes (512),UInt], UInt),

3 });

Listing 4.2: Attachers API.

The code listed in the figure 4.2 defines the method insert_data() that could be called

by an attacher in order to insert data inside the contract. In particular, this function takes

as input a concatenation of values and the DID, returning a number that represents how

many provers can attach to the contract.

The verifier could have two different types of interactions with the smart contract: they

can insert funds and they can also verify some provers. For this reason, as the figure 4.3

shows, there are two functions: insert_money() used to insert tokens inside the contract,

1Link to the GitHub discussion on Algorand BoxStorage: https://github.com/reach-sh/reach-lang/

discussions/1211.

https://github.com/reach-sh/reach-lang/discussions/1211
https://github.com/reach-sh/reach-lang/discussions/1211
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and verify() used to verify someone. While the former takes as input the amount of

money, the latter needs the DID of the prover to verify and his wallet address 2.

1 const verifierAPI = API(’verifierAPI ’,{

2 insert_money: Fun([UInt], UInt),

3 verify: Fun([UInt ,Address], Address),

4 });

Listing 4.3: Verifier APIs.

To call an API involves paying the network fees, for this reason, we used V iews which are

functions that can be called by the frontend and retrieve backends’ values to subsequently

display them without costs. An example could be displaying the contract balance or the

reward that could be received. The definition of Views is represented in the figure 4.4

1 const views = View(’views’, {

2 getCtcBalance: UInt ,

3 getReward: UInt ,

4 });

Listing 4.4: Reach views.

4.1.3 Creator: create and insert data

In Reach, we can have local steps or consensus steps. The former are executed inde-

pendently by participants, and the latter requires all participants to come together and

agree on the computation. A Reach local step can occur in the body of only or each

statement. An example is one of the first steps executed by the creator of the contract,

shown in figure 4.5, where the first prover who interacts with the contract has to initialize

the position variable. Indeed, as we saw in the project’s design, every smart contract is

associated with a specific location. The interact keyword is used to retrieve value from

the frontend, defined inside index.mjs file. By default, every value retrieved from the
2It can be easily retrieved by the concatenation of values associated with the contract.
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frontend is kept secret to avoid actions from malicious users. We used the declassify()

function to make them visible.

1 Creator.only (() => {

2 const pos = declassify(interact.position);

3 const get_did = declassify(interact.did);

4 const data_ins = declassify(interact.data_inserted);

5 });

Listing 4.5: Reach local step.

After that, the creator will have to publish his information on the network through the

use of the Reach publish() function, in order to make the data transparent to other

participants. In our case the used code is Creator.publish(pos, get_did, data_ins).

The data inserted by the creator and subsequently by attachers will be stored inside a

Reach Map, a data structure with a key-value approach where the key is the prover’s

DID and the value are all of the other data concatenated.

The commit() expression will allow the ending of the consensus step allowing more local

steps.

4.1.4 Attacher: insert data

After the creation and the insertion operation executed by the first prover, attachers

will be able to interact with the contract and insert their data. In order to do this, we

used Reach’s ParallelReduce feature: it allows multiple attachers to interact at the same

time with the contract and execute the operations defined by API. Again, they are an

”advanced” expression of the simple Reach’s while condition because they allow starting

a while with a fork inside, which executes code when the APIs are called. Our code will

look like the one in the figure 4.6.

1 const availableSits =

2 parallelReduce(SMART_CONTRACT_MAX_USER)
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3 .invariant(balance () == balance ())

4 .while(availableSits > 0)

5 .api(attacherAPI.insert_data ,

6 (data , did , returnedSits) => {

7 returnedSits(availableSits -1);

8 easy_map[did] = fromSome(easy_map[did], data);

9 return availableSits - 1;

10 })

Listing 4.6: Insert prover data.

This type of structure allows many attachers to interact with our contract following the

rules define inside the ParallelReduce. In particular, there can be a maximum number

of users, defined by SMART_CONTRACT_MAX_USER variable, attached to the

contract and the invariant define a condition that must be true for all time that the

while goes on.

For the whole execution of the while 3, provers will be able to call the API insert_data

that takes as input the data and the DID, returning how many users can still attach to

the contract.

4.1.5 Verification of a prover

The verification phase is managed by a second ParallelReduce and only the verifiers

can interact with it; it will terminate when all the users will be verified or the timeout

will be triggered. In this case, the ParallelReduce will manage two APIs, one for the

insert of funds/tokens by the verifier and the other for the verification process. Although

we will not show again how the ParallelReduce is formed, we decided to illustrate how

these two APIs have been built, both located inside the ParallelReduce itself.

3To make the DApp more similar to the use case described in the previous chapter, will be useful to

change the termination condition and add a timeout that closes the contract at the end of the day or at

a specific time.
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There can be up to four parameters that can be passed to the Reach api() function, and

generally structured as in the figure below 4.7.

1 .api(apiExpression ,

2 assumeExpression ,

3 payExpression ,

4 consensusExpression)

Listing 4.7: General structure of a Reach api.

The four parameter of an api() can be:

• apiExpression: the name of the API that is called;

• assumeExpression: the assumption that has to be true to continue the execution

of the API;

• payExpression: the payment that the users have to do when calling the API;

• consensusExpression: the code to execute when the API is called.

In our case, the insertion of new funds/tokens can be defined as in the figure 4.8.

1 .api(verifierAPI.insert_money ,

2 (money) => {

3 assume(money > 0);},

4 (money) => money ,

5 (money , moneyInserted) => {

6 moneyInserted(money);

7 return keepGoing2_counter;

8 })

Listing 4.8: Verifier inserts funds/tokens into the contract.

The API insert_money is responsible for fill the contract with tokens and this action is

executed by the payExpression while in the consensusExpression, a mandatory field,

we simply return how many tokens have been successfully inserted.
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The second API is empowered to validate new users and it is shown in the figure below

4.9.

1 .api(verifierAPI.verify ,

2 (did , walletAddress , ret) => {

3 if (balance () >=REWARD_FOR_PROVER){

4 transfer(REWARD_FOR_PROVER).to(walletAddress);

5 Creator.only (() => interact.reportVerification(did , this));

6 delete easy_map[did];

7 ret(walletAddress);

8 return keepGoing2_counter -1;

9 }else{

10 Creator.only (() => interact.issueDuringVerification(did));

11 ret(walletAddress);

12 return keepGoing2_counter;

13 }

14 })

Listing 4.9: Verifier validate provers.

This API is named "verify", it takes as input the DID of the user to verify and his wallet

address. This API will be called by a verifier after he completes the verification procedure

and one of its first steps is to check if the balance of tokens is greater than the reward

dedicated to the user. In our case, we used the balance() function to retrieve the balance

of native currency inside the contract. In a future version of this project, this line will

have to be modified if other types of tokens such as Algorand Standard Assets will be

used.

If the balance isn’t greater than the reward, will be called the issueDuringV erification 4

function and a log error will be triggered. Otherwise, a number of tokens, representing the

reward, will be sent to the wallet address of the prover through the transfer() method.

Then the DID and the value associated with it will be deleted from the map and the

4This function is implemented inside the frontend.
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number of attachers to the contract will decrease by one unit.

A timeout function will be called in order to close the contract after a specific amount of

time and the number of tokens that remains in the contract will be sent to the creator.

4.2 Frontend

The frontend is located inside the index.mjs and is a command-line interface imple-

mented with JavaScript language which, in its most general sense, is responsible for the

acquisition of the input data and the implementation of backend interface and methods.

Moreover to interact with the smart contract we used the Reach JavaScript standard

library. Through the frontend, users will be able to deploy a contract and attach to it,

passing the required data.

One of its first steps consists of asking the user to enter the passphrase used to retrieve

their blockchain account using newAccountFromMnemonic(passphrase) Reach func-

tion.

To build a console interface that manages the interactions between provers and verifiers,

we used the ask function of the Reach JavaScript standard library. This function allowed

us to manage different types of inputs, for example, Ask.yesno parses ”Yes”/”No” answers.

An example of the use of this library can be found at the beginning of the program, figure

4.10, when the user has to communicate if he already knows a contract id. If he does not

know an id maybe, in the real use case, he didn’t find a contract address associated with

its location inside the hypercube, so he will empower to deploy a new contract.

1 const user_know_id = await ask.ask(‘Do you already have a contract id?‘,

ask.yesno);

Listing 4.10: Ask to the user if he already knows a contract id.

Different types of actions will be executed based on the role of the user.

For example, the creator of the contract will have to insert the data required by the smart
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contract such as the DID, figure 4.11.

1 var did = await ask.ask(

2 ‘What is your DID?‘,

3 (did => did));

Listing 4.11: Ask DID to the creator.

The frontend has the purpose of implementing the methods defined inside the backend

and passing the variables. The figure below 4.12 shows the implementation of the three

creator methods (reportData, reportV erification, and issueDuringV erification), that

will be used inside the contract.

1 const creatorInteract = {

2 reportData: (did , data) => console.log(‘New data inserted \n DID: "${

did}" \n data: "${data}" ‘),

3 reportVerification: (did , verifier) => console.log(‘DID "${did}" has

been verified by Verifier "${verifier}" ‘),

4 issueDuringVerification: (did) => console.log(‘DID "${did}" has NOT

been verified.‘),

5 };

Listing 4.12: Implement the methods of the backend.

In the code snippet below 4.13 we pass the parameter to the backend. In particular,

the creator must pass three values: his DID, the current location and the concatenation

of values that will be associated with the DID inside the Reach Map of backend.

1 const concatData = (( params) => {

2 const {proofHashed , proofSigned , walletAddress , nonce , cid} = params;

3 return ‘${proofHashed}-${proofSigned}-${walletAddress}-${nonce}-${cid

}‘;

4 });

5

6 const addrCreator = stdlib.formatAddress(acc.getAddress ());

7 var data_concat = concatData ({
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8 proofHashed: String(hasProof),

9 proofSigned: String(proof_creator_signed),

10 walletAddress: addrCreator ,

11 nonce: nonce_inserted ,

12 cid: String(cid_declared)

13 });

14 creatorInteract.did = did_inserted;

15 creatorInteract.position = location_creator;

16 creatorInteract.data_inserted = data_concat;

Listing 4.13: Ask DID to the creator.

The creation of the contract implies its deployment which means moving the smart

contract from the local machine to the blockchain network (then it could be run by

everybody); this is done through the following code:

1 ctc = acc.contract(backend);

2 ctc.getInfo ().then((info) => {

3 console.log(‘The contract is deployed as=${JSON.stringify(info)}‘);

4 });

Listing 4.14: Deploy the contract and printing its id.

The acc.contract(backend) is a function that returns a handle of the Reach contract

based on the backend, provided with access to the acc account while the getInfo()

method is used to print the contract id. Since the backend variable is located inside

the index.main.mjs file, in a complete, decentralized environment without a database or

server, this file could be bundled with the web app, including it inside the source directory

of the project.

The contract id, also named contract address, will be used by other provers and verifiers

to attach to the contract and interact with it4.15.

1 const info = await ask.ask(

2 ‘Please paste the contract information:‘,
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3 JSON.parse

4 );

5 ctc = acc.contract(backend , info);

Listing 4.15: Attach to a contract using his contract id.

Subsequently, if the user is a prover, he will have to call the backend API insert_data as

follows 4.16:

1 await call (() => attacher_api.insert_data(

2 String(data_concat),

3 String(did)));

Listing 4.16: Prover call API for insert.

where, as for the deployer, the data_concat contains all the five parameters that have to

be inserted inside the contract.

Otherwise, if the user is a verifier after attached to the contract as shown in the code

4.15, he will have to decide if inserts funds or validate some users. The verifier will have

to call the insert_money API in order to insert funds into the contract 4.17:

1 const money_sent = await call (() => verifierAPI.insert_money(amountChose

));

Listing 4.17: Verifier call the API to inserts funds.

or the verify API to verify and send to someone the reward, shown in the code snippet

below 4.18:

1 await call (() => verifierAPI.verify(

2 parseInt(didProver),

3 walletProver));

Listing 4.18: Verifier call the API verify.
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4.3 Simulation scripts

Nowadays, many blockchains exist and are being used by developers to execute their

applications. The question that we asked ourselves is which of these blockchains to choose.

Logically, it would be infeasible to test our smart contract in all the consensus networks,

and, for this reason, we opted to use Ethereum and Algorand. While the former, and his

scaling solution such as Polygon, are really used by developers, the latter is growing up

quickly and presents a lot of interesting features.

Since we would like to get the delay time, plot charts, and produce some metrics, we de-

cided to write the simulation scripts with Python. Specifically, we re-write our frontend

eliminating the interaction of the user with the command-line-interface, substituting it

with a complete automatize process that creates provers and makes them interact

with the smart contract.

Our test-suite is composed of three main files: the one that manages the execution of the

simulation, startSimulation.py 5, the interaction with the smart contract, index.py, and

the index.rsh file related to the contract itself.

To serve us Python, we have to use Reach RPC Server which provides access to com-

piled JavaScript backends via an JSON-based RPC protocol [61], based on HTTPS.

This protocol allows the developer to specify the RPC method to invoke as follows:

/stdlib/METHOD, where METHOD is a function of Reach JavaScript standard li-

brary.

To communicate with the RPC server we used rpc() and rpc_callbacks() functions: the

former is used to invoke a synchronous RPC method, and the latter is useful when we

have an interactive RPC method with our backend.

First of all, the script starts with the generation of N provers 6 which leads to creating

5The simulation will start when all the N provers are generated.
6We do this ensuring that the generation process of the prover will not affect the delay times.
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and assigning new random DID 7 to every prover, locating them in a specific location,

creating for each of them a new blockchain account (or retrieve it if already set). We did

not focus on the creation of report details and generation of CID because this script will

have to measure the blockchain performances, so their presence would not have relevance

to the results.

The prover is represented by a prover object which has a constructor that will be called

by the generateProvers() function, before starting the simulation; takes in input N which

is the number of provers that will be generated.

A prover object is an instance of the Prover’s class that implements the following methods:

1. find_neighbours(): Will return the list of neighbors in the same area of the prover

that is calling the method;

2. createAccount(): Used to generate N testAccount or retrieve the ones already cre-

ated;

3. deploySmartContract(): Used to deploy a new contract through the interaction with

the index.py file;

4. attachToSmartContract(): Used to attach to a specific contract.

Concerning the 2° method, if we use a real testnet, we have to create in advance the

users that will be used by the simulation script and we did this thanks to other scripts

that will be presented in the next section. The public 8 and private keys, different for

each blockchain, have been saved in a dictionary and will be used by startSimulation

script and they are generated by the support scripts.

Subsequently, a for loop will be executed on every prover as follows:

1. For every prover, check if he has some neighbors. In a real case, this corresponds to

the moment when users use Bluetooth to check who is nearby;
7The generation process of random DID is done ensuring that everybody has a unique identifier.
8Also referred as the wallet address.
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2. We have simulated the interactions with the hypercube. In particular, the user

will check inside the hypercube if a contract ID associated with his position already

exists: if not exist user will deploy a new contract with deploySmartContract() func-

tion, otherwise will retrieve the contract ID and then call attachToSmartContract().

Since Reach requires that the steps inside the smart contract are executed in a certain

order, we used the Thread library. The snippet of code below represents the deployment

of the contract 4.19:

1 def deploySmartContract(self , proverObject):

2 ctc_creator = rpc("/acc/contract", proverObject.account)

3 creatorThread = Thread(target=play_Creator ,

4 args=( ctc_creator ,

5 proverObject.location ,

6 proverObject.did ,

7 proverObject.data))

8 return creatorThread , ctc_creator

Listing 4.19: Call to the deploySmartContract() function.

The play_Creator(), called when the Thread starts, is imported from the index.py file

and is empowered to execute the deployment through the interaction with the backend

4.20. Specifically, play_Creator() sends the creator’s contract RPC handle 9 and his

implemented participants interface to the server using the rpc_callbacks function.

1 def play_Creator(contract_creator , position_ins , did_ins , data_ins):

2 rpc_callbacks(

3 ’/backend/Creator ’,

4 contract_creator ,

5 dict(position=position_ins ,

6 did=did_ins ,

7 data_inserted=data_ins ,

9An RPC handle is a string that represents the corresponding resource, i.e., an account representation,

and is included in the RPC response.
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8 ** player(’Creator ’)),)

Listing 4.20: Creator deploy the contract.

In our case, the rpc_callbacks will interact with the backend, passing the values inside

the dictionary, where the player() function allows us to implement the methods defined

in the participant contract interface. In our case this is represented by the snippet of

code below 4.21:

1 def player(who):

2 def reportPosition(did , data):

3 ...

4 def reportVerification(did , verifier):

5 ...

6 def issueDuringVerification(did):

7 ...

8 return {’stdlib.hasConsoleLogger ’: True ,

9 ’reportPosition ’: reportPosition ,

10 ’reportVerification ’:reportVerification ,

11 ’issueDuringVerification ’:issueDuringVerification}

Listing 4.21: Implementation of the participant interface.

As we said before, we have simulated the interaction with the hypercube: if the smart

contract is not associated with a location in the dictionary, the deployment will be exe-

cuted. Otherwise, it will be up to the attach method called by attachToSmartContract()

as in the figure below 4.22:

1 def attachToSmartContract(self , provObj , ctc_creator):

2 attacherThread = Thread(target=play_bob , args=( ctc_creator , provObj.

account , provObj.data , provObj.did ,))

3 return attacherThread

Listing 4.22: startSimulation.py: call the attachToSmartContract().
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In this case, the attach will be performed by the play_bob() function defined inside the

index.py; it will be empowered to opt-in to the contract and insert the information of the

prover 4.23:

1 def play_bob(ctc_user_creator , accc , data_concat , did):

2 ctc_bob = rpc("/acc/contract", accc , rpc("/ctc/getInfo",

ctc_user_creator))

3 result_counter = rpc(’/ctc/apis/attacherAPI/insert_data ’, ctc_bob ,

data_concat , did)

Listing 4.23: index.py: perform the attach.

Regarding the verifier APIs, we will not enter into details since they are very similar to

the attach operation, the only difference consists of specifying the name of API to call,

for example, the snippet of code 4.24 represents the API used to insert a specific amount

of tokens (native currency) inside the contract 10.

1 def verifier_pay(ctc_user_creator ,accc):

2 ctc_verifier = rpc("/acc/contract", accc , rpc("/ctc/getInfo",

ctc_user_creator))

3 money_payed = rpc(’/ctc/apis/verifierAPI/insert_money ’,

ctc_verifier , SMART_CONTRAT_PAYMENT)

Listing 4.24: Verifier inserts funds inside the contract.

4.4 Support scripts

Usually, in order to interact with the blockchain, a minimum balance inside the wal-

let is required. For this reason, we have to create, and subsequently fund, the wal-

lets used on each of our three consensus networks. For example, for what concerns
10SMART_CONTRACT_PAYMENT is a constant defined as rpc(”/stdlib/parseCurrency”, 0.5).

The parseCurrency Reach’s method, is used to format a specific amount of money that will be sent

to the backend.
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Algorand, we wrote and used NewAcc_algo.py file to create N accounts using the

account.generate_account() of Algorand SDK function, storing the public and private

keys generated. Every wallet was manually funded using the Algorand online dis-

penser, that act as a faucet of Algos 11.

Concerning Ethereum, we created a new script that interacts with node providers to cre-

ate new wallets through the use of the Web3 library. However, in this case, we have to

make an additional component empowered to send funds to the wallet, since the Ethereum

faucet, usually, can send a minimum amount of tokens 12 only to one account for a day.

The quantity of the tokens distributed by Ethereum and Polygon faucets was not enough,

therefore, we decided to contact the testnet administrators and ask them for a large num-

ber of tokens. Subsequently, inside the eth_new_account.py file, we created a method

empowered to distribute the received tokens from the one communicated to the admin to

the other created accounts.

To send these transactions, we first have to define the endpoint of the node provider such

as "https://goerli.infura.io/API_APIKEY " used for the Goerli network. The next steps

include creating a transaction specifying the number of tokens to send and other manda-

tory parameters. Subsequently, the sender will sign the transaction using his private key

and propagate it as the code snippet below shows 4.25.

1 tx = {

2 ’nonce ’: nonce ,

3 ’to’: to_address ,

4 ’value ’: web3.toWei (0.3, ’ether’),

5 ’gas’: 200000 ,

6 ’gasPrice ’: gasPrice

7 }

8 signed_tx = web3.eth.account.sign_transaction(tx , private_Key)

11Every round of fund, send 10 Algos from the faucet to the receiver address. Link to the faucet :

https://bank.testnet.algorand.network/
12Between 0.1 and 0.5 ETH for Goerli testnet, and between 0.5 and 5 MATIC for Mumbai Polygon.

https://bank.testnet.algorand.network/
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9 tx_hash = web3.eth.send_raw_transaction(signed_tx.rawTransaction)

Listing 4.25: Fund a wallet.

The send method will be called from within a for loop which will be executed for every

wallet.

As you can notice, both Algorand and Ethereum present some limits if we want to test

with many accounts and this is due to the minimum balance and the procedure to fund

them. Moreover, Ethereum gas fees depend on the congestion of the network and create

many transactions with the purpose of sending tokens might cause high transaction costs.

4.5 Execution of the project

In this section, we will show some behaviors of our smart contract when command-line

interface is used as frontend.

Firstly, to execute the project we have to specify the consensus network, for example,

we can use "REACH_CONNECTOR_MODE=ETH ./reach run" and run on Ethereum

Reach devnet. We can also set the connector to ALGO if we prefer the Algorand

blockchain.

To make the test more understandable, figure 4.1, we set the maximum number of attach-

ers, defined inside the contract, to 2. Then we created and deployed the contract and,

in two other terminals, we respectively attached one user, verifying both the two provers

with a verifier account. 13. As you can notice, in the image is also shown the log of the

verification process of our two prover DIDs, which are 9999 and 12.

To execute the test-suite the command is "REACH_CONNECTOR_MODE=ETH ./reach

rpc-run python3 -u startSimulation.py" and to test it on the real testnet the connector

must switch to ETH-live or ALGO-live. Then you will have to apply some changes

inside the startSimulation script, setting the ETH_NODE_URI for Ethereum be-

13The signed proof, hashed proof, and CID information were purely invented.
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Figure 4.1: Execution of a contract with two attachers on the Ethereum blockchain.

tween Goerli and Polygon Mumbai. You also have to set to a new RPC method when

creating/retrieving a blockchain account, switching from "/stdlib/newTestAccount" to

"/stdlib/newAccountFromSecret" specifying the passphrase as the parameter. The image

below represents part of the initial execution of our test-suite on the Goerli testnet 4.2.
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Figure 4.2: Execution on the Ethererum Goerli testnet.
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Chapter 5

Performance evaluation

The Algorand and Ethereum performances’ systems have been measured focusing on

transactions latency and transaction costs both for the deployment and for the at-

tach operations. The deploy function integrates an insert function of the creator’s data,

so it isn’t a merely deploy.

Precisely, we measure the performances using the Ropsten 1, Goerli and Polygon [39]

Mumbai testnet 2 concerning the Ethereum blockchain. At the same time, we use Algo-

rand testnet for Algorand itself.

5.1 Results

We decided to measure only the deploy and attach phases of the insert operation into

the contract, excluding the verification process. This was made because the verify oper-

ation is similar to the attachment since it is a basic API call to the contract.

We tested the smart contract architecture with different numbers of users: 8, 16, 24, and

32, and we created the corresponding numbers of smart contracts: 2, 4, 6, and 8. Recall
1Only a few tests have been completed causing the deprecation of the testnet. For this reason, we

decided to replicate the tests on a new Ethereum testnet, Goerli.
2The base fee was between 40 and 70 gwei with 1.5 gwei for the priority fee.
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that every smart contract must have four users attached to it (contract creator included).

We didn’t have the opportunity to test our DApp with more users since every one of them

needs a minimum amount of tokens as balance, and this is not easy to achieve with many

users.

5.1.1 General analysis

Before entering into the details of our two consensus networks, we executed a general

analysis using the Reach tool; the output is shown in the figure 5.1.

Figure 5.1: Conservative analysis of the smart contract.

As we can see, the output shows some information such as the amount of memory

used, the steps of our smart contract and fees. Concerning the fees, they are blockchain

agnostic, so they do not represent the exact amount of ALGOs or gas fees, but they can

be easily derived using the amount of fees displayed.
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In addition, both Goerli and Polygon, have a deployment process that used 1,440,385

gas while the amount of gas used for the attach is 82,437.

5.1.2 Ethereum performances

We measured the Ethereum transactions speed on the Ropsten testnet, using eight

provers where two of them are creators and six are the neighbors. As the chart in figure

5.2 shows, the interaction time between users and smart contracts is unstable and can be

very high.

Specifically, the deploy phases (the first and the fifth bar) are the ones that require more

time while the attach need less time due to fewer transactions for each user.

Figure 5.2: Ethereum Ropsten Testnet: performance of 8 transactions.

The reasons for this big instability and executions transactions time can be caused by

the Ethereum gas fees system and Ropsten testnet itself. Since miners validate transac-

tions with higher fees first, this may have impacted the performances.

Moreover, the Ropsten testnet has been deprecated, so we have decided to make more

tests on different networks such as Goerli. We have made four different tests in order to
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measure the transactions speed:

• 1° Test: using 8 provers where 2 of them are creators and 6 are the neighbors;

• 2° Test: using 16 provers where 4 are creators and 12 are the neighbors;

• 3° Test: using 24 provers where 6 are creators and 18 are the neighbors;

• 4° Test: using 32 provers where 8 are creators and 24 are the neighbors.

The smart contracts have been deployed for up to 8 different positions which are:

7H369F4W+Q8, 7H369F4W+Q9, 7H368FRV+FM, 7H368FWV+X6, 7H367FWH+9J,

7H368F5R+4V, 7H369FXP+FH and 7H369F2W+3R.

The chart does not display the time for each transaction, but the total interaction time

between one user and the smart contract, i.e., if the smart contract is already deployed

only two transactions will be needed to interact with the contract realizing the attach

operation.

The performance on Goerli testnet is shown in the figure 5.3. Regarding the first image

of the figure 5.3a, the first two users are the ones that deploy the two contracts; in the

second images, 5.3b, the first four users are the deployers; in the last images, 5.3c, the

first six users are the deployers while the others are the attachers, and so on.

In general, the attacher time requires less time than the deploy phase. However,

sometimes, an attach operation could require more time than a deployment and this can

be seen in the figure 5.3d. We can also notice that the required time is only sometimes

stable and this may be due to the congestion of the network.

5.1.3 Polygon performances

Regarding Polygon, the results are shown in figure 5.4. As you can notice, and we

shall see in a more detailed analysis, neither Polygon has a stable transaction time.

Indeed, some users may take longer, and others may take less time.
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(a) Goerli: performances with 8 users. (b) Goerli: performances with 16 users.

(c) Goerli: performances with 24 users. (d) Goerli: performances with 32 users.

Figure 5.3: Goerli performances.

However, the fact that it is a layer-2 and off-chain solution leads to processing many

transactions per second and allows it to be faster than the Ethereum Goerli testnet,

taking less than half the time.

However, as we shall see in the next section, it is only sometimes convenient to leverage

Polygon to deploy smart contracts.

This is because the cost of its transactions, as happens for Ethereum, is influenced by the

congestion of the network. That means if the network is very busy, we could pay a lot for

the transaction fees.
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(a) Polygon: performances with 8 users. (b) Polygon: performances with 16 users [62]

(c) Polygon: performances with 24 users. (d) Polygon: performances with 32 users.

Figure 5.4: Polygon performances.

5.1.4 Algorand performances

Concerning Algorand, the results of our analysis, shown in the figure 5.5, highlighted

that Algorand has a low and stable total transaction times compared to Ethereum.

Indeed, although its latencies are very similar to those of the Polygon chain, there is little

dispersion of the required time for each user interacting with the blockchain.

That means the deployment time is always the same for each user, and the same happens

for the attach time.

This can be identified as a sign of the stability and efficiency of the network.
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(a) Algorand: performances with 8 users. (b) Algorand: performances with 16 users.

(c) Algorand: performances with 24 users. (d) Algorand: performances with 32 users.

Figure 5.5: Algorand performances.

5.1.5 Results comparison

Finally, we decided to compare some of our results. In particular, we compared the

two operations, deploy and attach, for the test with 16 and 32 users 3.

The following tables show some metrics to identify better which could be the most suitable

blockchain for our use case. Due to the expensive cost of Goerli and Polygon, it was

impossible to compute the metrics on the same day and, for this reason, the results were

3The price are computed on November 17th, 2022: an Ether costs €1156, an ALGO €0.26, and one

MATIC costs €0.85.
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calculated on different days. In particular, the results of Algorand and Goerli are in the

table 5.2 and 5.4 have been computed the day after calculating the metrics for Polygon.

Deploy | 16 users

Testnet Mean Max Min Dev

Std

Fees Euro

Goerli 56.15s 73.7s 44.85s 11.52s 0.06 ETH € 69

Polygon 23.44s 25.41s 19.52s 2.4s 0.002 Matic € 0.002

Algorand 28.53s 29.12s 27.23s 0.76s 0.005 Algo € 0.001

Table 5.1: Performances of the deployment operation, with 16 users.

Deploy | 32 users

Testnet Mean Max Min Dev

Std

Fees Euro

Goerli 54.4s 71.86s 36.84s 11.74s 0.019 ETH € 21.96

Polygon 25.78 32.22 20.27 4.02 0.002 Matic € 0.002

Algorand 28.93s 29.57s 27.66s 0.64s 0.005 Algo € 0.001

Table 5.2: Performances of the deployment operation, with 32 users.

We can notice from the first table, 5.1, that Algorand’s deployment requires, on average,

more time than a deployment on Polygon (28.53 seconds instead 23.44) considering 16

users test. However, the Algorand standard deviation seems to be nice below the other two

blockchains, which means there is little dispersion, both for the deployment and attach.

This is a very important measure since it shows us that Algorand is more stable, requiring

the same time for every deploy operation and attach operation respectively. It also seems

that Algorand’s cost is greater than the Polygon blockchain, however, Polygon can reach

very expensive transaction cost, increased by more than 100%, as we can see from our



5.1 Results 91

test on a different day where there was some network congestion 4, while on Algorand

this doesn’t happen. In addition, the same thing also happens for Goerli which can reach

a cost equal to 0.1401 ETH 5 which corresponded to €171.18 on October 21 2022.

If we compare the table containing the test with 16 users 5.1 and the one with 32 users

5.2, we can notice that Algorand maintains the same performance while the other two

blockchains do not. The required time for Goerli and Polygon is greater than Algorand.

In addition, Algorand executed more transactions than the other two blockchains, in the

deployment phase, due to the design of the network. For this reason, it may take longer.

In the tables below, we compare the attach results for both 16 and 32 users. Also, in this

case, using a different number of users led to a different amount of time required by Goerli

and Polygon, while not on Algorand, which has approximately the same time between the

test with 16 and 32 users. The attach operation for Algorand is faster than the other two

Attach seconds 16 users

Testnet Mean Max Min Dev

Std

Fees Euro

Goerli 35.95s 44.47s 24.03s 7.84s 0.0137 ETH € 15.83

Polygon 20.6s 22.23s 18.3s 1.44s 0.00053 Matic € 0.0004

Algorand 14.54s 14.93s 14.08s 0.31s 0.009 Algo € 0.002

Table 5.3: Performances of the attach operation, with 16 users.

blockchains and this can be due to the fact that Algorand can support many transactions

per second, thanks to the recent upgrade that happened on September 2022 which allows

Algorand to manage until 6,000 transactions per second. Finally, the attach operation

generally requires few fees, except for the Goerli testnet which has reached 0.0137 ETH

4Expensive fees on Polygon Mumbai: Contract 0x9e978434d0334ff305c4d99402c0bb141eb0504f.
5Goerli fees: Contract 0x15d19f65f81d9e7c5a095dc6bdac5ab36bb6c16dcf1a14045749b0c60489ce4b.

https://mumbai.polygonscan.com/address/0x9e978434d0334ff305c4d99402c0bb141eb0504f
https://goerli.etherscan.io/tx/0x15d19f65f81d9e7c5a095dc6bdac5ab36bb6c16dcf1a14045749b0c60489ce4b
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Attach | 32 users

Testnet Mean Max Min Dev

Std

Fees Euro

Goerli 25.56s 83.53s 22.47s 4.06s 0.003 ETH € 3.46

Polygon 19.35s 21.87s 14.82s 2.09s 0.00053 Matic € 0.0004

Algorand 14.54s 15.59s 13.96s 0.5s 0.009 Algo € 0.002

Table 5.4: Performances of the attach operation, with 32 users.

that is €15.83 6.

6The transaction fees of the attach operation is computed making the sum of the cost for each user

that attach to the contract.



Conclusion

In this work, we presented an architecture focused on the Proof of Location problem,

and we proposed a use case where users could collect data through a collaborative ap-

proach that consists of an environment-friendly application, making reports considering

the context where they are, reporting pollution cases, natural disasters, vandalism, etc.

Specifically, we start by highlighting the possibility of a malicious user that uses this kind

of location-based application that offers some incentive to spoof his position and unfairly

obtain the reward.

After working attentively researching amongst the related works, we decided to realize

our architecture using an infrastructure-independent approach, which means we will use

the witnesses’ presence near the prover to attest his location instead of relying on access

points which would involve a high economic cost. In particular, witnesses will be empow-

ered to generate the proof/certificate that will be sent to the requesting prover and stored

inside our system.

The architecture was designed using DLT and DFS, which means blockchains, DHT, and

IPFS. These tools allow our infrastructure to inherit their properties, such as true de-

centralization, data integrity, immutability, security, and transparency. Again, one of the

most important features of our use case concerns its complete decentralization because,

thanks to the blockchain and DHT, we could remove the single point of failure of a cen-

tralized server/database.

We implemented part of the proposed architecture, focusing on the interaction between
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provers, verifiers, users empowered to validate the location proofs, and smart contracts

choosing Ethereum, Polygon, and Algorand blockchains because of their performances

and the possibility to execute code over them. Our smart contract is written thanks to

the use of Reach, a blockchain-agnostic language that is able to generate the source code

for different consensus networks from the starting code.

Finally, we evaluate the performances of the interactions between users and the blockchains,

measuring the time required to deploy a new contract and attach to it, quantifying the

amount of fees needed from these operations. There, we found that Algorand, a layer-1 so-

lution that solves the blockchain Trilemma, performs better than the other two blockchains

in every test that we produced, considering both the aspect of transaction time and their

cost.

Future works will be focused on the enhancement of our architecture, building a mobile

app, which would be used to generate the proof, and the respective software needed by

the verifier to validate the smart contract content, and also implementing the features

that allow the users to interact with the DHT, used to store the reports. Moreover, it will

be useful to modify the architecture proposed by us to solve the issues of the collusion

attacks.
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