
Università degli Studi Di Urbino Carlo Bo

Tesi di Laurea

Corso di Informatica Applicata

Implementation of a Smart Contract
based System for Traceability in

Agrifood

Autore:
Matteo Serafini
Università degli Studi Di Urbino Carlo Bo
m.serafini12@campus.uniurb.it

Relatore:
Stefano Ferretti
Dip. di Scienze Pure ed Applicate
Università degli Studi Di Urbino Carlo Bo
stefano.ferretti@uniurb.it

Co-Relatore:
Mirko Zichichi
Law, Science and Technology Joint
Doctorate
mirko.zichichi2@unibo.it

Sessione Invernale 2021/2022

mailto:m.serafini12@campus.uniurb.it
mailto:mirko.zichichi2@unibo.it

Index

I. Introduction 4

II. Background 6

a. Distributed Ledger Technology 6

b. Decentralized Application 6

c. Smart Contract 7

d. Ethereum 7

e. Scalability, Security, Decentralization, Consumption 8

i. Blockchain limitations 9

ii. DAG solution 11

a. IOTA 12

b. EVM 14

III. Agrifood Supply Chain Scenario 15

IV. Architecture 17

a. Methodology 17

b. UML diagram 18

V. Implementation 19

a. Development Tools 19

i. Ganache 19

ii. Metamask 20

2

b. Smart Contracts in Solidity 21

i. Producer 21

ii. Resource 23

VI. Deployment in IOTA 2.0 26

i. Wasp node configuration 27

ii. Wasp-cli configuration 28

iii. Chain initialization 29

VII. Evaluations 30

a. Tests 31

b. Results 33

VIII. Conclusions 36

IX. References 37

3

Introduction

In recent years, with the steady advance of globalization,

traceability has become recognised as an essential tool for guaranteeing

food safety and food quality. Definition: Food traceability is “the ability to

follow the movement of a feed or food through specified stage(s) of

production, processing and distribution” [1].

In the Agrifood sector, ensuring food safety and security is a critical and

necessary prerogative. A proper traceability system is needed in order to

prevent and eventually trace any problem that may incur, be it a

compromised product, a falsified origin or others.

A traceability system should be secure, transparent and openly viewable

while respecting the privacy of its parties. With decentralized traceability

systems in place, cutting down fraudulent documentation and minimizing

risks to both producers and consumers, fairer trading, people’s and

environment’s wellbeing can be assured more easily [2].

Distributed ledger technologies (DLT), due to the inherent trust and

inalterability they provide, are becoming a first choice to implement such

systems [3][4][5][6]. The mainstream DLT often are blockchain

technologies like Bitcoin and Ethereum. Another type of distributed ledger

technology is based directed acyclic graph (DAG) and offers a more

scalable and environmentally friendly solution to the blockchains. An

example of a DAG based technology is IOTA [7].

In this paper we will briefly describe the differences in the model, the

architecture, the development and deployment process of Smart Contracts

with the Ethereum[8] and IOTA platforms; as well as focusing on the

feasibility of Smart Contract employment for secure, transparent and

4

available supply chain food traceability systems. In the agri food industry

traceable assets all have a location of origin, they are at first a primary

resource and later they are transformed into a product, zero or more

times, before reaching the end customer; we will later analyze the actors,

entities and events that take part in these stages of the supply chain.

The thesis is structured as such:

● Introduction

● In the second chapter we describe and explain the meaning of the

technical terms we will encounter in this paper as well as a quick

presentation of the architecture of the Ethereum and IOTA

Distributed Ledger Technologies.

● In the third chapter we analyze Agrifood Supply Chain Scenarios in

general

● In the fourth chapter we describe the architecture of the sample

DApp for agri food traceability

● In the fifth chapter we will dive into a sample implementation of a

distributed supply chain food traceability system through the use of

smart-contracts written in the Solidity programming language.

● In the sixth chapter we will describe the attempt to port such a

system from the Ethereum platform to the IOTA 2.0 platform [9].

● The seventh chapter contains tests and evaluation of the results

obtained.

● The eighth chapter contains the conclusions found, some

consideration of the difficulties encountered and possible

subsequent developments.

Keywords — Smart-Contract, Blockchain, Tangle, DApp, Agrifood Supply

Chain Traceability, Ethereum, IOTA, Solidity

5

Background

Distributed Ledger Technology

Distributed Ledger Technology (DLT) is a technology providing an

open environment with no singular authority for registering, sharing, and

synchronizing transactions on digital devices. DLT executes this function

making use of several computer science disciplines such as distributed

systems, cryptography, data structures, or consensus algorithms. It

supplies many highly desirable features such as decentralization,

openness, immutability, transparency, traceability, security, availability,

etc.).

Decentralized Application

A decentralized application, or DApp, is a computer application that

is stored and executed on a distributed system, that is on a network of

nodes, with no node taking over as a supervisor. DApps can operate

autonomously, through the use of Smart Contracts. The decentralized and

distributed nature of DLT on peer-to-peer networks allows for it to be

transparent, deterministic and redundant, enhancing security openness

and availability.

6

Smart Contract

The concept of Smart Contract was first proposed by Nick Szabo in

1995 [10]: ‘‘a smart contract is a set of commitments defined in digital

form, including the agreement that the participants in the contract can

implement these commitments’’. Smart Contract is a computer protocol

designed to verify or execute contracts in an information-based manner. It

allows trusted transactions without a third party and these transactions are

traceable and irreversible, Smart Contracts are immutable as no one can

tamper with the code of the contract, and distributed; because of their

storage inside of a distributed system Smart contracts have been

developed and used in several fields [12]; their purpose is to provide better

security, transparency and reduce other transaction costs related to

traditional contracts. In the case of this paper I focus on agri-food supply

chains Smart Contracts.

Ethereum

Blockchain is the most famous and stable example of a DLT. In the

blockchain as each transaction occurs, it is recorded as a “block” of data

and each block is connected to the ones before and after it, similarly to a

linked list. The blocks store the exact time and sequence of transactions,

the transactions are blocked together in an irreversible chain, this

prevents blocks from being altered or being inserted between two already

existing ones. Each additional block strengthens the verification of the

previous one and as a consequence of the entire blockchain. This makes

the blockchain tamper-evident, delivering the key strength of immutability.

Ethereum proposes to utilize blockchain technology not only for

maintaining a decentralized payment network but also for storing computer

code that can be used to power tamper-evident decentralized financial

contracts and applications. In Ethereum there is a mandatory fee for each

transaction regardless of the actual price of the assets being exchanged.

This is due to the architecture of the blockchain and its validating

algorithms. This fee in jergon is called gas.

7

Scalability, Security, Decentralization, Consumption

Scalability in DLTs can be described as the ability to support growth

in the form of the frequency of transactions. This means that a highly

scalable blockchain would be able to adapt or at least not suffer from an

increase of its adoption. The blockchain trilemma tells us that greater

scalability is possible, but security, decentralization, or both will suffer as a

consequence [13]. Scalability is a strong prerogative for blockchain

networks to compete with other modern or even legacy centralized

platforms.

Blockchain Limitations

For every new transaction, each node adds information regarding the

transaction in the ledger, consequently the ever growing transaction

history could overload the system. Blockchains could also experience

issues in terms of hardware limitation or energy consumption. The Proof of

Work algorithm is by nature not resource friendly, moreover ss the

blockchain network expands further, it is difficult to set up and maintain the

8

hardware required for operating nodes and validating transactions on long

chains. For example, as opposed to when it was first announced in 2009,

nowadays to successfully mine Bitcoin blocks it takes expensive and high

energy consuming hardware (ASIC or GPU).

[14]

Another critical factor is the high transaction fees. While in the case of the

exchange of high value assets the transaction fees can become negligible,

often in the use case of IoT devices or in general whenever tiny and

frequent transactions are needed, high value or even any transaction fee

would render the system unfeasible.

Transactions in the blockchain have to wait for relatively long periods of

time for the validation process, also considering the number of

transactions in the queue. In the case of Bitcoin almost 10 minutes are

needed for building a new block. A much better rate is offered by

Ethereum with the possibility of 15 seconds for building a block [15].

9

Another reason for resource wastage in the blockchain is the orphan

blocks, an orphan block is a block that has been solved within the

blockchain network but was not accepted due to a lag within the network

itself.

Example of a Blockchain bottleneck:

[16]

The blocks are validated relatively slowly and one at a time often forming a

queue. Due to block size and block production time limitations heavier

congestions can also occur.

10

DAG solution

One approach to overcome the scalability issues of blockchains is the use

of the directed acyclic graph (DAG) data structure. Blockchain and DAGs

have some similarities. Both allow users to obtain eventual consensus

over the state of a ledger, in a decentralized manner. However, they do

differ in their underlying mechanisms, and more importantly, have some

key differences in their scaling properties and their potential use cases. In

DAG based DLTs unlike in blockchain systems, orphan blocks can be

merged back into the system, and are therefore not a waste of resources.

This is one of the major advantages of DAGs. Another advantage is the

possibility for any user to validate new blocks and attach them to the DAG,

while a blockchain transaction must be included in a block strictly by a

block producer.

DAG DLT solution to the bottleneck:

[16]

11

IOTA

IOTA is a DLT that differs from Ethereum as it is not based on the

blockchain but on DAG. IOTA’s DAG is called Tangle. From IOTA’s wiki “In

the Tangle, there are no block producers, and therefore every user is free

to issue new transactions and attach them on different Tangle parts

without an entity that acts as middlemen. The Tangle is not a single chain

of blocks that follow each other. It is a network of parallel processed

transactions (so-called Tips). These parallel transactions form the "front" of

the Tangle and offer many different points for newly issued transactions to

be attached, which dramatically speeds up the processing of

transactions.”[16]. In IOTA’s versions previous to the 2.0 there is a

supervising node, The Coordinator, that sends signed messages called

milestones that nodes trust and use to confirm messages. Messages in

the Tangle are considered for confirmation only when they are referenced

by a milestone that nodes have validated. To ensure that new messages

always have a chance of being confirmed, the Coordinator sends indexed

signed milestones regularly. This way ensures that nodes can compare

the indexes of their milestones to check whether they are synchronized

with the rest of the network. This approach is however temporary as it

makes full decentralization of the system not possible. In IOTA v2.0 the

coordinator has been removed in accordance with IOTA Foundation’s

vision of a fully decentralized, feeless and highly scalable distributed

ledger technology.

12

Example of a growing Tangle (DevNet IOTA v2.0):

[17]

[17]

Blockchain vs. Tangle:

[16]

13

EVM

EVM which stands for Ethereum Virtual Machine is currently the

environment which most Smart Contract implementations are running on.

Solidity is the programming language of choice with EVMs, and has been

created for this specific purpose. The main benefit of using EVM/Solidity in

the IOTA platform is simply the sheer number of resources available from

it from years of development and experimentation on Ethereum. There are

many articles, tutorials, examples and tools available for EVM/Solidity, and

the IOTA Smart Contracts (ISCP) implementation is fully compatible with

them. Any existing SCs that run with Ethereum will probably need no (or

very minimal) changes to function on IOTA Smart Contracts platform [16].​

In The IOTA platform, an EVM based chain runs as an IOTA SC, so any

internal EVM chain from the point of view of the ISCP is just another Smart

Contract. Because of this, it is possible to run both Wasm based Smart

Contracts and an EVM chain in a single ISCP. In the wasp-cli package

tools it is offered an EVM compatible JSON-RPC server, which allows

existing tools like metamask to connect to these EVM Chains. To deploy

SCs to a new EVM chain is as easy as pointing to the address of the

JSON-RPC gateway.

14

https://ethereum.org/en/developers/docs/evm/
https://soliditylang.org/

Agrifood Supply Chain Scenario

In the agri food production domain, we can assume that that

virtually all supply chain systems start from one or more primary sources

(soil, herd, beehives, lake, sea, etc.), through a set of events they produce

a primitive resource (harvest, milk, raw honey, fishes, etc.), then this

resource is transformed to a product, zero or possibly several times.

Configuring such complicated systems can be trivial if they are not

targeted for a specific purpose, product, legislation system, etc.

As mentioned in this [19] paper:

_The main Actors in such types of systems could be:

● Administrator/Owner

● Producer

● Supplier

● Transformer

● Wholesaler

● Retailer

● End Customer

● Certification Authority

● Professional

● Analysis Lab

● Warehouse

● Device

_The main entities:

● Address Catalog

● Producer

● Productive Resource

15

● Product

● Token

● Notarization document

_The main Events:

● Transformation events

○ Product Merging

○ Product Splitting

○ Product Transformation

● Documentation events

○ Asseveration

○ Token creation

○ Data Registration

○ Notarization Event

The Owner/Administrator main tasks are to oversee the entire system and

manage the collection of different actors in the system.

The actors have the responsibility to manage their own collection of

resources. Producer and Transformer can for example transform an asset

from a primary resource to a final product, or they can transfer the asset to

another owner. Actors like the Certifier are not able to hold or transform

assets, instead they can only generate events associated with the target

resource. The events in the chain are mainly associated with the resource

itself since they are the traceable asset in the system. In general, the main

data to store in any agrifood system are therefore the catalog of actors

managed by the owner, the catalog of resources associated with each

actor and the catalog of authorized actors associated with each resource,

each element with its respective attributes and state; finally one or more

collections of events to be able to retrace the entire supply chain.

16

Architecture

Solidity is the language of choice for the implementation of the

sample DApp, it is the standard language running on EVMs and it is

Object Oriented. Therefore the approach used in the engineering of the

DApp is also Object Oriented.

For the sake of simplicity the sample DApp will take in account a much

less complex system:

_Owner of the chain: manages address catalog of producers.

_Producers: as holders of resources and able to execute transformations

_Resources: will have a list of authorized parties to prevent fraudulent

actions

_Generic Events : any type of event will be generalized in this one.

The owner will be the managing account of the chain so it won’t need a

SC to be represented.

The SCs will be used to represent Producers and Resources.

The Generic Events will be represented as a property of each Resource

17

We modeled the two Smart Contracts as shown in the following image.

The Producer SC in its methods can reference other instances of itself as

well as the Resource SCs. We generated a custom complex type to

represent agri events, we will describe it in the implementation section.

UML Diagram

18

Implementation

Development Tools

Ganache

Ganache allows to spawn a local blockchain which is used during

the development of decentralized applications. It provides an easily

accessible and tweakable development environment for the testing of

Smart Contracts, including a variable number of mock accounts and their

respective balances in Ethers.

19

Metamask

Metamask can be used in real life scenarios to interact with one’s

cryptocurrency wallets. However it is useful also in the development and

testing phase of DApps, for example it makes it easy to create mock

accounts which have been used for the IOTA Smart Contracts testing

phase or even to be connected to Ganache. It is employed by users to

manage their own accounts and the respective private keys, this allows

easy signing of transactions to send to the nodes of the DLT.

20

Smart Contracts in Solidity

Here is an example of Solidity source code used to implement the

Producer and Resource smart contract. The OpenZeppelin toolkit is used

to aid in the development, compilation, deployment and interaction with

Smart Contracts [19]; in this case the Ownable object has been used for

simplifying the implementation of ownership of a Smart Contract and the

library Clones to enable a cheaper creation of Resource Smart Contracts

through the use of assembly code.

This is a portion of the code for the Producer SC including several

attributes to describe it; the _account attribute identifies the wallet address

associated with the SC instance; _resources and _resourceMap are both

used to manage the resources catalog for each instance; the constructor

inherits from the Ownable object so that when an instance is deployed the

address that is calling the deployment will be identified as owner.

The most interesting method is ChangeProducer :
Input: address - identifies the new Producer SC,

address - identifies the Resource SC,
uint - identifies the role of the new producer

Execution: get the instance of Resource and Producer SC,
get wallet account of new Producer SC,
manipulate producers’s resources catalogs,
change resource ownership

Output: void
import "./Resource.sol";
import "@openzeppelin/contracts/proxy/Clones.sol";
contract Producer is Ownable {

string private _name;
string private _description;
address private _account;
address[] private _resources;
mapping (address => uint) private _resourceMap;
event AddResourceEvent (address indexed ownerAddr,

address indexed addr);

21

event ChangeProducerEvent (address indexed src,
address indexed dest,
address indexed res);

constructor (
string memory name,
string memory description,
address account

) Ownable() {
_name = name;
_description = description;
_account = account;

}
modifier onlyAuthorized() {
require(msg.sender == owner() || msg.sender == _account,

"ERROR only authorized");
_;

}
function CreateResource (
string memory name,
string memory description,
string memory unitOfMeasure,
uint quantity,
uint role,
address[] memory prevProd

) public onlyAuthorized roleInRange(role) {
Resource res = new Resource(name, description, unitOfMeasure,

quantity, prevProd);
res.addAuthorized(_account, role);
AddToResources(address(res));

}
function ChangeProducer (
address newProducer,
address resAddr,
uint role

) public onlyAuthorized roleInRange(role) {
Resource res = Resource(resAddr);
Producer prod = Producer(newProducer);
address prodAccont = prod.GetAccount();
res.addAuthorized(prodAccont, role);
res.addAuthorized(_account, 0);
res.transferOwnership(newProducer);
_resources[_resourceMap[resAddr]] = address(0);
emit ChangeProducerEvent(address(this), newProducer, resAddr);
}
modifier roleInRange(uint i) {
require(i >= 0 && i <= uint(type(Role).max),

"ERROR role number out of range");
_;

}

22

modifier resInRange(uint i) {
require(i >= 0 && i < _resources.length,

"ERROR resource number out of range");c
_;

}
function AddToResources(address res)
public onlyAuthorized {
_resources.push(res);
emit AddResourceEvent(address(this), address(res));

}
function RmFromResources(uint index)
public onlyAuthorized {
_resources[index] = address(0);

}

23

This is a portion of the code for the Resource SC including several

attributes to describe it; to represent the different types of resources

(primary or product), and the different types of actors (farmer, agrifirm,

certifier, publicBody, retailer, reseller) we used an Enum data type; for the

_agriEvents array we generated a custom data type, using the struct

keyword we were able to compose 4 base types into a complex one:

AgriEvent; we use it in the method addEvent(...) making it easy to pass all

needed the parameters as one, we then save this object to the contract

storage appending it to the events array aforementioned.

import "@openzeppelin/contracts/access/Ownable.sol";
enum Role {
disabled,
farmer,
agrifirm,
certifier,
publicbody,
retailer,
reseller

}
contract Resource is Ownable {

string private _name;
string private _description;
uint private _quantity;
string private _unitOfMeasure;
uint32 private _minTimeInterval;
AgriEvent[] private _agriEvents;
address[] private _origins;
address[] private _roles;
ResourceType private _resourceType;
mapping (address => Role) private _authorized;
enum ResourceType {
primary,
product

}
struct AgriEvent {
uint dateTime;
address registrant;
string name;
bytes parameters;

}

24

event agriEvent (address indexed registrant, address indexed
resource);
constructor (
string memory name,
string memory description,
string memory unitOfMeasure,
uint quantity,
address[] memory origins

) Ownable() {
_name = name;
_description = description;
_unitOfMeasure = unitOfMeasure;
_quantity = quantity;
_origins = origins;
if (origins.length == 0){
_resourceType = ResourceType.primary;

} else {
_resourceType = ResourceType.product;

}
}
modifier eventInRange(uint eventNr) {
require(eventNr >= 0 && eventNr < _agriEvents.length,

"ERROR: The event number must be within range!");
_;

}
modifier onlyAuthorized() {
require(msg.sender == owner() || _authorized[msg.sender] !=

Role.disabled,
"ERROR: not authorized");

_;
}
function AddEvent (
string memory name,
bytes memory parameters

) onlyAuthorized public {
_agriEvents.push(AgriEvent(block.timestamp, msg.sender, name,
parameters));
emit agriEvent(msg.sender, address(this));

}
function SetQuantity(uint quantity)
onlyAuthorized public {
require(quantity >= 0, "Cannot be negative");
_quantity = quantity;

}
function AddOrigin (
address originAddr

) onlyAuthorized public {
_origins.push(originAddr);

}

25

function addAuthorized (
address authAddr,
uint role

) onlyAuthorized roleInRange(role) public {
_authorized[authAddr] = Role(role);

}
function ReadEvent(

uint eventNr
) public view eventInRange(eventNr)
returns (AgriEvent memory) {
return _agriEvents[eventNr];

}

Solidity was born specifically to write Smart Contracts therefore it has

some unique functionalities compared to other OOP languages. For

instance, modifier is a special type of function used to allow or prevent

the execution of another function in accordance with a certain condition:

onlyAuthorized is an example of it; address is a data type specific of

EVMs, it is essentially a string unique to the network that identifies a Smart

Contract or a wallet account, furthermore it can send and receive values

with the use of the keyword address payable. event identifies a type of

data storage that is permanent in the blockchain, the difference with the

storage data type, the main type of permanent storage in EVMs, is that

the first it is lightweight and only accessible externally; so whatever it is

stored through the use of the event keyword it is not reusable by the

Smart Contract logic but it is used for logging purposes [20].

26

Deployment in IOTA 2.0

The IOTA Smart Contract Platform natively supports the Wasm

Virtual Machine to run SCs written in Rust, Golang or Typescript, however

it is not yet a tested and proven technology as opposed to the EVM; The

EVM has already undergone years of development on Ethereum and we

can now benefit from a stable and resourceful working environment. Since

IOTA v2 provides an Ethereum Virtual Machine layer we can use the

Smart Contracts that have been previously used on the Ethereum platform

unchanged, as well as the testing file, apart from very few initial

configurations. The IOTA foundation has built Wasp to enable the use of

Smart Contracts. Wasp is the node software that enables Smart Contracts

validation as a part of a committee.The committee of validators is formed

by the connection of multiple wasp nodes. When consensus is reached on

a virtual machine state-change, that transaction is anchored to the IOTA

tangle, making it immutable. The current experimental implementation of

IOTA SCs (IOTA v2.0), is deployed on a fully decentralized development

network, powered by GoShimmer nodes [16].

We need to set up a Wasp development node and Goshimmer network

and later we need to start a JsonRpc service for that network. The easiest

choices now are to either utilize the development network already

provided in the wasp repository or to install wasp and wasp-cli commands

and point to the public goshimmer development network.

27

Wasp node configuration

"webapi": {
"bindAddress": "127.0.0.1:9090"

},
"dashboard": {
"auth": {
"scheme": "basic",
"username": "wasp",
"password": "wasp"

},
"bindAddress": "127.0.0.1:7000"

},
"peering":{
"port": 4000,
"netid": "127.0.0.1:4000"

},
"nodeconn": {
"address": "goshimmer.sc.iota.org:5000"

},
"nanomsg":{
"port": 5550

}

The web API interface allows access to functionality of the node software

via exposed HTTP endpoints.

The IOTA network is a distributed network which uses a gossip protocol to

broadcast data among IOTA nodes. [] To participate in the network, each

node has to establish a secure connection to the other nodes and mutually

exchange messages. Each node can be uniquely identified by a peer

identity.

Each Wasp node publishes important events via a Nanomsg message

stream. Nanomsg clients can subscribe to the message stream.

Nodeconn defines the TCP port exposed to TXStream for clients to

connect and subscribe to real-time notifications on confirmed transactions

targeted to specific addresses. It is used by Wasp nodes to be notified

about incoming requests and updates on a given chain.

28

Wasp-cli configuration
"goshimmer": {

"api": "https://api.goshimmer.sc.iota.org",
"faucetpowtarget": -1

},
"wasp": {
"0": {
"api": "127.0.0.1:9090",
"nanomsg": "127.0.0.1:5550",
"peering": "127.0.0.1:4000"

}
}

Here we define the access points of the Wasp node, and Goshimmer

network. We need to be careful to define the same ip and ports as in the

wasp server configuration file. Here the Goshimmer API endpoint is the

public one provided by the IOTA foundation.

[16]

29

Wasp-cli init script
wasp-cli init
wasp-cli peering info
PUBKEY=$(wasp-cli peering info | grep PubKey | cut -d':' -f2)
NETID=$(wasp-cli peering info | grep NetID | cut -d':' -f2)
wasp-cli peering trust $PUBKEY $NETID:4000
wasp-cli request-funds
wasp-cli chain deploy --committee=0 --quorum=1 --chain=agrievm
--description="EVM Chain for agrifood traceability"
wasp-cli chain deposit IOTA:10000
wasp-cli chain evm deploy -a agrievm --alloc
$OWNER_ACCOUNT:$VALUE,$PRODUCER1_ACCOUNT:$VALUE,$PRODUCER2_ACCOUNT
:$VALUE,$CERTIFIER_ACCOUNT:$VALUE
wasp-cli chain evm jsonrpc --chainid 1074 --account $OWNERKEY

● Here the code communicates the peering details to the network

● Starts a IOTA chain with a consensus quorum of 1, so that

transaction can be easily validated in a development environment

with only one node

● Deposits 10000 IOTA to the aforementioned chain

● Deploys an EVM chain in the form of a IOTA native SmartContract

while allocating four users with a certain balance to it.

● Starts a local Json Rpc service on port 8545 with a unique chain Id

of 1074 and allocating the manager account

30

Evaluation

Tests

Producer Smart Contract Deployment Test

before("Deploy contracts", async () => {
console.log("Create First Producer");
let factory = new ethers.ContractFactory(ProducerJSON.abi ,

ProducerJSON.bytecode, ownerAccount);
let producer1 = await factory.deploy("one", "one desc",
p1Ac.address);
await producer1.deployTransaction.wait();
p1Addr = producer1.address;
console.log("Create Second Producer");
let producer2 = await factory.deploy("two", "two desc",
p2Ac.address);
await producer2.deployTransaction.wait();
p2Addr = producer2.address;

});

Here the code performs the first deployment of two Producer SCs on the

chain, then simply stores their addresses in two variables for later use.

Create Resource from Producer Smart Contract Test
it("create first resource", async () => {
console.log("Create First resource from first producer");
let p1 = new ethers.Contract(p1Addr, ProducerJSON.abi, p1Ac);
let tx = await p1.CreateResource("first resource", "some desc ",

"uOM", 100, 1, []);
let receipt = await tx.wait();
res0Addr = await p1.GetResource(0);

});

Here the code calls the Producer SC to perform the deployment of its first

Resource SC, then simply stores its addresses in a variable for later use.

31

Add Authorized Account to Resource Smart Contract Test
it("Add certifier to authorized accounts", async () => {
let res0 = new ethers.Contract(res0Addr, ResourceJSON.abi,

p1Ac);
let tx = await res0.addAuthorized(certAc.address, 3);
let receipt = tx.wait();

});

Here the owner of the chain is able to authorize the address of a Wallet

account to call certain operations on the target resource, in this case the

account is registered as a certifier who will be able to add agriEvents

associated to the resource.

Change Producer Smart Contract Test
it("-----transfer resource from one producer to another-----",
async () => {
let p1 = new ethers.Contract(p1Addr, ProducerJSON.abi, p1Ac);
let p2 = new ethers.Contract(p2Addr, ProducerJSON.abi, p2Ac);
let resAddress = await p1.GetResource(0);
let resourceP1 = new ethers.Contract(resAddress,

ResourceJSON.abi, p1Ac);
let initialQ = await resourceP1.GetQuantity();
let tx0 = await p1.ChangeProducer(p2.address,

resourceP1.address, 1);
tx0.wait();
let tx1 = await p2.AddToResources(resAddress);
tx1.wait();
let resourceP2 = new ethers.Contract(resAddress,

ResourceJSON.abi, p2Ac);
let tx2 = await resourceP2.SetQuantity(Number(initialQ) + 10);
tx2.wait();
let newQ = await resourceP2.GetQuantity();
assert.equal(Number(initialQ) + 10, Number(newQ));
assert.equal(p2.address, await resourceP2.owner());

});

Here the code instantiates two Producer SCs and transfers the ownership

of one Resource SC from the first producer to the second. It then performs

some write operation to check if the transfer has been truly successful.

32

Read Events from Events Log
after("Read Events from events log", async () => {

let res0 = new ethers.Contract(res0Addr, ResourceJSON.abi,

p1Ac);

let eventFilter = res0.filters.agriEvent();

let events = await res0.queryFilter(eventFilter);

console.log(events);

});

This is an example of an event log

33

Results
Ethereum Test Results

IOTA test Results

34

Test Execution Time Comparison:

Test IOTA ETH

Create 1st Resource 1011 290

Create 2nd Resource 1002 323

Add and Read Event from Storage 999 291

Add external Certifier to authorized accounts 996 96

Add Event from an external certifier 1016 254

Transfer resource from one producer to another 3015 428

Transaction Gas Consumption Comparison:

Name Description IOTA ETH

CreateResource Create 1st Resource 1000273 989273

CreateResource Create 2nd Resource 1045979 1034379

AddEvent AgriEvent from Storage 185624 171524

addAuthorized Add authorized account 48596 44696

AddEvent Add Event from an external certifier 168464 156464

ChangeProducer Change Producer 52865 49465

AddToResources Add to Resources 71837 66637

SetQuantity Set quantity 30864 28264

35

As we can see from the results of these tests we can assume 2 main

things:

● The IOTA is advancing in the right direction in the implementation of

fully decentralized and environment friendly EVMs

● With these settings the Ethereum native EVM is much more

performant than the IOTA EVM.

While this assumptions seems reasonable, we need to take in account

that IOTA EVMs is undergoing and probably still needs undergo under

intense development, changes and integration tests within the IOTA

platform before it can be regarded as astable alternative to the stable

Ethereum EVMs, on the other hand with the adoption of more nodes (in

this test case there was only 1 local node) while with the IOTA architecture

allowing for any node to validate new blocks the performance would grow

the Ethereum blockchain would experience lower performances and

eventually bottlenecks.

36

Conclusions

IOTA presents many advantages for supply chain management and

food traceability compared to Ethereum. Spending even a cheap gas fee

for each transaction in a traceability system in the never stopping food

trade would greatly discourage its adoption from local farmers or little agri

firms, as they may not find it feasible, on the contrary bigger agri firms

could find the fee negligible. In this use case, with IOTA allowing many

free transactions per second, integrating Ethereum EVMs and

implementing a truly decentralized system we don't see many advantages

with the Ethereum platform.

However, Ethereum is a fairly stable and tested platform, IOTA still has a

lot to go through and its version 2.0 is still in the Beta stage. For example

when starting the wasp node and goshimmer networks during the

development we often had unexpected and virtually inexplicable crashes

sometimes simply solved with a simple restart of the programs or at times

of the hosting machine. I also encountered problems using the

mainstream Web3.js library when interacting with the IOTA network and

had to rely on the Ethers.js library. On the bright side Ether.js seems to be

a more concise, easy to read and well thought out library, at least in this

use case.

IOTA may not be as captivating for users at first since it needs a wide

adoption to increase its performance while Ethereum could appear more

captivating even if in the long run will probably be slower than the other.

Some improvements and or revisitation of the sample DApp engineered

for the purpose of this paper might be the development of a front-end User

Interface or a complete revisitation of the application in Rust, a high level

performant language which is supported by the ISCP through the native

Wasm VM.

37

References
● [1] ISO Technical Committee, Traceability in the Feed and Food

Chain—General Principles and Basic Requirements for System
Design and Implementation, ISO 22005:2007, Geneva,
Switzerland, 2016, accessed:2020-11-10.
[https://www.iso.org/standard/36297.html]

● [2] M. Tripoli and J. Schmidhuber, “Emerging opportunities for the
application of blockchain in the agri-food industry,” FAO and ICTSD:
Rome and Geneva. License: CC BY-NC-SA, vol. 3, 2018.

● [3] M. P. Caro, M. S. Ali, M. Vecchio, and R. Giaffreda,
“Blockchain-based traceability in agri-food supply chain
management: A practical implementation,” in 2018 IoT Vertical and
Topical Summit on Agriculture-Tuscany (IOT Tuscany). IEEE, 2018,
pp. 1–4.

● [4] G. Baralla, A. Pinna, and G. Corrias, “Ensure traceability in
European food supply chain by using a blockchain system,” in 2019
IEEE/ACM 2nd International Workshop on Emerging Trends in
Software Engineering for Blockchain (WETSEB). IEEE, 2019, pp.
40–47.

● [5] S. Wang, D. Li, Y. Zhang, and J. Chen, “Smart contract based
product traceability system in the supply chain scenario,” IEEE
Access, vol. 7, pp. 115 122–115 133, 2019.

● [6] B. Yu, P. Zhan, M. Lei, F. Zhou, and P. Wang, “Food Quality
Monitoring System Based on Smart Contracts and Evaluation
Models,” IEEE Access, vol. 8, pp. 12 479–12 490, 2020.

● [7] IOTA Foundation [https://www.iota.org/].
● [8] Ethereum [https://ethereum.org/en/].
● [9] IOTA 2.0 Platform [https://v2.iota.org/].
● [10] N.Szabo, “Smart Contracts: Building Blocks for Digital

Markets”(1996)
[https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDR
OM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_con
tracts_2.html]

● [12] S. N. Khan, F. Loukil, C. Ghedira-Guegan, E. Benkhelifa, A.
Bani-Hani “Blockchain smart contracts: Applications, challenges,
and future trends”
[https://link.springer.com/article/10.1007/s12083-021-01127-0].

● [13][https://www.gemini.com/cryptopedia/blockchain-trilemma-dece
ntralization-scalability-definition#section-what-is-scalability]

● [14] Bitcoin Energy consumption
[https://www.mdpi.com/1996-1073/14/14/4254/pdf]

● [15] Transaction Confirmation Time Prediction in Ethereum
Blockchain Using Machine Learning
[https://arxiv.org/pdf/1911.11592.pdf]

● [16] IOTA wiki
[https://wiki.iota.org/learn/about-iota/an-introduction-to-iota]

● [17] IOTA DevNet Visualizer
[https://explorer.iota.org/devnet/visualizer/]

38

https://www.iso.org/standard/36297.html
https://www.iota.org/
https://ethereum.org/en/
https://v2.iota.org/
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://link.springer.com/article/10.1007/s12083-021-01127-0
https://www.gemini.com/cryptopedia/blockchain-trilemma-decentralization-scalability-definition#section-what-is-scalability
https://www.gemini.com/cryptopedia/blockchain-trilemma-decentralization-scalability-definition#section-what-is-scalability
https://www.mdpi.com/1996-1073/14/14/4254/pdf
https://arxiv.org/pdf/1911.11592.pdf
https://wiki.iota.org/learn/about-iota/an-introduction-to-iota
https://explorer.iota.org/devnet/visualizer/

● [18] Lodovica Marchesi, Katiuscia Mannaro, Raffaele Porcu
Automatic Generation of Blockchain Agri-food Traceability Systems
[https://arxiv.org/abs/2103.07315]

● [19] OpenZeppelin, “Openzeppelin: Contracts”.
[https://github.com/OpenZeppelin/Openzeppelin-contracts]

● [20] Solidity Docs [https://docs.soliditylang.org/en/latest/index.html]

39

https://arxiv.org/abs/2103.07315
https://github.com/OpenZeppelin/Openzeppelin-contracts
https://docs.soliditylang.org/en/latest/index.html

