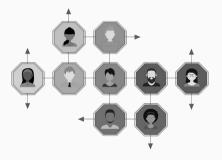
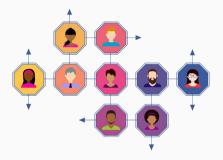
Law, Science and Technology MSCA ITN EJD n. 814177


Mirko Zichichi^{1,2}, Stefano Ferretti³, and Gabriele D'Angelo²

¹Universidad Politécnica de Madrid ²University of Bologna ³University of Urbino "Carlo Bo" On the Efficiency of Decentralized File Storage for Personal Information Management Systems

- 1. Personal Data
- 2. Distributed Technologies
- 3. Performance Evaluation
- 4. Conclusion


Personal Data

Social Media Personal Data

- + Social media and Web 2.0 \rightarrow broke boundaries in authorship and readership
- [\$] of personal data is helped by the more pervasive nature of today's digital world
- + [+] personalization \Rightarrow [+] privacy threats for user-generated content
- + Platform-centered data management \Rightarrow [-] transparency on the use of users' data

Internet of People (IoP)

- Internet of People (IoP):
 - leverages such centralized platforms, when needed
 - places individuals at the heart of the data management design
- Smartphones and personal IoT devices will function as gateways

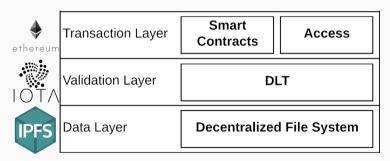
Internet of People (IoP)

- Internet of People (IoP):
 - leverages such centralized platforms, when needed
 - places individuals at the heart of the data management design
- $\cdot\,$ Smartphones and personal IoT devices will function as gateways
- Main issue:

publish data while granting compliance with regulations, i.e. GDPR

Personal Information Management System (PIMS)

To ensure **sovereignty** of personal data and its **interoperability** we use the:


Personal Information Management System (PIMS) model a virtual boundary, where individuals can control how, when and what data is shared with external parties

- \cdot adheres to transmission and processing of personal data rules of GDPR
- acts as a strong facilitator for the **consent** of individuals

Distributed Technologies

Decentralized architectures

Decentralized architectures might be the key to foster individuals' data **sovereignty** and fair data **transfer**.

We propose an architecture based on **Distributed Ledger Technologies (DLTs)** and **Decentralized File Storage (DFS)** able to manage personal data storage and access.

Smart Contracts

- "Trustless trust" \rightarrow trust is shifted from a human intermediary to the protocol itself.
- Ethereum Virtual Machine

computes (*quasi-*)Turing-complete programs in a distributed way and permanently stores their input and output on the blockchain.


Data Access Control

Access to the data can be **purchased** or **allowed by the owner** through dedicated smart contract methods

- Access Control Lists (ACL):
 - represent the rights to access a bundle of data of a consumer
 - an **authorization service** checks the ACL to release encryption keys

IOTA Masked Authentication Messaging Channels

- $\ensuremath{\text{IOTA}} \rightarrow$ network of nodes that holds a distributed ledger where transactions are validated without fees
- Masked Authenticated Messaging (MAM) \rightarrow communication protocol that adds the functionality to emit and access an encrypted data channels over IOTA

IOTA Masked Authentication Messaging Channels

- $\ensuremath{\text{IOTA}} \rightarrow$ network of nodes that holds a distributed ledger where transactions are validated without fees
- Masked Authenticated Messaging (MAM) \rightarrow communication protocol that adds the functionality to emit and access an encrypted data channels over IOTA
- IOTA (and DLTs in general) offer data immutability, verifiability and traceability
- Personal data (and large sized non-personal data) is referenced in MAM channels through **hash pointers**, in order to exploit those features

IPFS

• InterPlanetary File System (IPFS)

- A DFS that creates a resilient file storage and sharing system
- Useful to store data that is not convenient to put on DLTs
- \cdot Once a file is published in the DFS, the **identifier** can be exploited to retrieve it
- Uses data digest as identifier \leftarrow hash pointer
- Personal data \rightarrow is published as an IPFS object \rightarrow referenced through its hash pointer into a MAM channel
- \cdot The digest allows verifying the **integrity** of the data

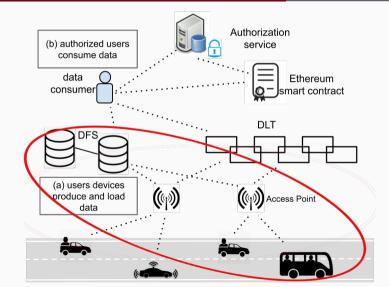
SIA

• IPFS does not offer guarantees on the persistence of data

· SIA

integrate a DLT to provide incentives for nodes to maintain data

File Contracts


agreements between a storage provider and their clients on DLT

Skynet

nodes that already formed contracts with every available host and providing a service with its own policies

Performance Evaluation

Use case [1/2]

Use case [2/2]

- Large sized data: photos (1 MB).

DFS Node Type

1. IPFS Proprietary

- An IPFS node on a dedicated device (dual core CPU, 8GB RAM), connected to other nodes in the main network

- Receiving requests only from our test

2. IPFS Service

- An IPFS service provider (Infura)
- Receiving requests from all over the world (one of the most used provider)

3. Sia Skynet

- A Sia node in the **Skynet**, without the needs to create a File Contract
- Receiving fewer requests than Infura (relatively **new service**)

Use Case DFS Node Type Results

Sending geolocation to DFS nodes

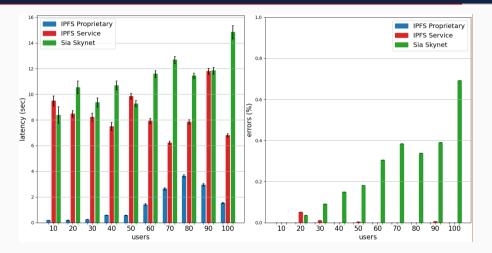


Figure 1: Latencies and errors sending geolocation. Black line \rightarrow confidence interval (95%)

Use Case DFS Node Type Results

Sending photos to DFS nodes

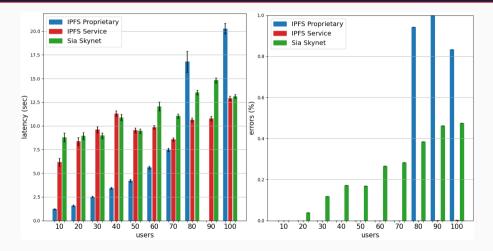


Figure 2: Latencies and errors sending photos (1 MB). Black line \rightarrow confidence interval (95%)

Conclusion

Conclusion

- Architecture based on DLTs and DFS for the development of a decentralized Personal Information Management System (PIMS)
- Tested Infura IPFS, Sia Skynet, and a proprietary service
- Proprietary solution seems to offer better guarantees in terms of responsiveness and reliability
- · Future Work
 - Further experiments with other scalable DLTs
 - Decentralized authorization service