
Introduction and experimental analysis

RADIX DLT

Matteo Berti 2019

TABLE OF CONTENTS

TESTING ALPHANET
Testing performances of

Radix on testing net

02

TEMPO
Introduction to Radix Tempo

consensus algorithm

01

TESTING BETANET
Testing tokens on
betanet emulator

03

TEMPO
Radix Consensus Algorithm

01

INTRODUCTION
In 2016 Daniel Hughes invented Tempo: a novel
distributed ledger architecture and consensus
algorithm. This algorithm is designed to scale.

RADIX TEMPO

U N I V E R S E
Instance of Tempo

RADIX TEMPO

PAYLOAD ATOM

A communication, an
email, a message.

EXOTIC ATOM

Variants created for specific
application purposes.

TRANSFER ATOM

Transfer the ownership of
an item, such as currency.

U N I V E R S E
Instance of Tempo

LEDGER ARCHITECTURE

NODE
Local ledger

instance

STORE ALL the global ledger

STORE PART of the global ledger

LEDGER ARCHITECTURE

NODE
Local ledger

instance

STORE ALL the global ledger

STORE PART of the global ledger

A subset of the global ledger is known as a
SHARD

Nodes can store any shard, this enables IoT devices to actively participate in a Universe.

LEDGER ARCHITECTURE

To compute which Shard an Atom belongs:

ShardID = HASH(atomDestinationAddress) % ShardSpace

LEDGER ARCHITECTURE

To compute which Shard an Atom belongs:

ShardID = HASH(atomDestinationAddress) % ShardSpace

Atoms with multiple destinations will be present in multiple shards.

Increases redundancy and availability of Atoms.

LEDGER ARCHITECTURE

Indeed an Atom that performs an inter-shard transfer is present in
both the previous owner's and new owner's shards.

Eliminates the need for a global state.

Atoms with multiple destinations will be present in multiple shards.

Increases redundancy and availability of Atoms.

To compute which Shard an Atom belongs:

ShardID = HASH(atomDestinationAddress) % ShardSpace

TRANSFERS

OWNERSHIP TRANSFER

ATOM X
[…]

Consumable = α
Owner = Alice

Consumer = β
Alice’s Sign

ATOM Y
Consumer = β

Consumable = β
Destinations:
[Alice, Bob]

NEW

NETWORK

An owned item is represented by a CONSUMABLE.

TRANSFERS

Verification

OWNERSHIP TRANSFER

ATOM X
[…]

Consumable = α
Owner = Alice

Consumer = β
Alice’s Sign

ATOM Y
Consumer = β

Consumable = β
Destinations:
[Alice, Bob]

NEW

NETWORK

An owned item is represented by a CONSUMABLE.

EVENT AVAILABILITY

Atoms are routed to the nodes that contain the associated shards through a Gossip protocol.

ATOM Y
[…]

Consumable = β
Destinations:
[Alice, Bob]

EVENT AVAILABILITY

ATOM Y
[…]

Consumable = β
Destinations:
[Alice, Bob]

FROM Shard 1

TO Shard 3

NETWORK

Atoms are routed to the nodes that contain the associated shards through a Gossip protocol.

EVENT AVAILABILITY

ATOM Y
[…]

Consumable = β
Destinations:
[Alice, Bob]

FROM Shard 1

TO Shard 3

NETWORK

Atoms are routed to the nodes that contain the associated shards through a Gossip protocol.

Nodes storing Shard 1 and Shard 3
need to be aware of the event of:

- Alice's spend
- Bob's receipt
- State of Item (α) consumed

EVENT AVAILABILITY

ATOM Y
[…]

Consumable = β
Destinations:
[Alice, Bob]

FROM Shard 1

TO Shard 3

NETWORK

Atoms are routed to the nodes that contain the associated shards through a Gossip protocol.

Nodes storing Shard 1 and Shard 3
need to be aware of the event of:

- Alice's spend
- Bob's receipt
- State of Item (α) consumed

POST THE EVENT
The responsibility of the item's
state has transferred from node
storing Shard 1 to those storing
Shard 3.

LOGICAL CLOCKS

All nodes have a local logical clock: an ever-increasing integer value representing
the number of new events witnessed by that node.

0

53

1

54

2

5552

TEMPORAL PROOF PROVISIONING

Temporal Proof is a solution to the double spending problem.

This proof is carried with the Atom along the network.

TEMPORAL PROOF PROVISIONING

NODE NALICE

TEMPORAL PROOF

ATOM X

If N owns a copy of
SHARD 1 checks that the
item hasn't been already
spent by Alice.

If any provable discrepancy
is found the proof fails.

Otherwise, the node will
forward the request to all
neighbors storing either
Shard 1 or 3.

Temporal Proof is a solution to the double spending problem.

This proof is carried with the Atom along the network.

TEMPORAL PROOF PROVISIONING

NODE NALICE

TEMPORAL PROOF

ATOM X

If N owns a copy of
SHARD 1 checks that the
item hasn't been already
spent by Alice.

If any provable discrepancy
is found the proof fails.

Otherwise, the node will
forward the request to all
neighbors storing either
Shard 1 or 3.

Temporal Proof is a solution to the double spending problem.

This proof is carried with the Atom along the network.

NODE P

N forwards to P a New Temporal Proof:
Space-time coordinate: (l, e, o, n)

TEMPORAL PROOF PROVISIONING

NODE NALICE

TEMPORAL PROOF

ATOM X

If N owns a copy of
SHARD 1 checks that the
item hasn't been already
spent by Alice.

If any provable discrepancy
is found the proof fails.

Otherwise, the node will
forward the request to all
neighbors storing either
Shard 1 or 3.

Temporal Proof is a solution to the double spending problem.

This proof is carried with the Atom along the network.

NODE P

N forwards to P a New Temporal Proof:
Space-time coordinate: (l, e, o, n)

(l, e, o, n)

l: logical clock
value for the event

e: event hash
HASH(Atom)

o: node N id

n: node P id

TEMPORAL PROOF PROVISIONING

Node P validates Atom X, appends (l, e, o, n) and forward it to Shard 1 or 3 neighbours.

PROVISIONING

Red arrow: PROVISIONING
Blue arrow: GOSSIP
Dotted line: CONNECTION

PROVISIONING EFFICIENCY

Reduces the efficiency of resolving conflicts.

Provisioning length TOO SHORT

Increase the bandwidth load and time taken.

Provisioning length TOO LONG

PROVISIONING EFFICIENCY

Sufficient provisioning length:
log(n) * 3 or max(3, sqrt(n))

Reduces the efficiency of resolving conflicts.

Provisioning length TOO SHORT

Increase the bandwidth load and time taken.

Provisioning length TOO LONG

PROVISIONING EFFICIENCY

OPTIMIZATION

If Alice sends Item to Bob, and Bob then sends Item to Carol, the
nodes involved in Alice → Bob Temporal Proof take also part in
Bob → Carol transfer.

Sufficient provisioning length:
log(n) * 3 or max(3, sqrt(n))

Reduces the efficiency of resolving conflicts.

Provisioning length TOO SHORT

Increase the bandwidth load and time taken.

Provisioning length TOO LONG

VECTOR CLOCKS

Vector clocks are used to determine the partial order of two conflicting Atoms
(e.g. double spending).

VECTOR CLOCKS

1. The pair of vector clocks contains a common node:

VC(ATOM X) VC(ATOM Y)

A 5 B 10

D 12 G 7

F 34 P 47

P 17 L 24

When Atom X and Atom Y conflict there are many scenarios:

Vector clocks are used to determine the partial order of two conflicting Atoms
(e.g. double spending).

VECTOR CLOCKS

1. The pair of vector clocks contains a common node:

VC(ATOM X) VC(ATOM Y)

A 5 B 10

D 12 G 7

F 34 P 47

P 17 L 24

When Atom X and Atom Y conflict there are many scenarios:

Vector clocks are used to determine the partial order of two conflicting Atoms
(e.g. double spending).

VC(ATOM X) ≤ VC(ATOM Y)

VECTOR CLOCKS

2. The pair of vector clocks does not contain a common node:

VC(ATOM X) VC(ATOM Y)

A 5 B 10

D 12 G 7

F 34 V 47

S 17 L 24

a. It can be used an intermediate node.

VC(ATOM Z)

J 60

S 19

T 20

V 30

When Atom X and Atom Y conflict there are many scenarios:

Vector clocks are used to determine the partial order of two conflicting Atoms
(e.g. double spending).

VECTOR CLOCKS

2. The pair of vector clocks does not contain a common node:

VC(ATOM X) VC(ATOM Y)

A 5 B 10

D 12 G 7

F 34 V 47

S 17 L 24

a. It can be used an intermediate node.

VC(ATOM Z)

J 60

S 19

T 20

V 30

When Atom X and Atom Y conflict there are many scenarios:

Vector clocks are used to determine the partial order of two conflicting Atoms
(e.g. double spending).

Indeed:
VC(ATOM X) ≤
VC(ATOM Y)

(Intermediate
Atoms could be
more than one)

≤

≥

VECTOR CLOCKS

Commitment Order Determination

2. The pair of vector clocks does not contain a common node:

When Atom X and Atom Y conflict there are many scenarios:

Vector clocks are used to determine the partial order of two conflicting Atoms
(e.g. double spending).

b. If an intermediate node cannot be found, then:

VECTOR CLOCKS

Commitment Order Determination

2. The pair of vector clocks does not contain a common node:

When Atom X and Atom Y conflict there are many scenarios:

Vector clocks are used to determine the partial order of two conflicting Atoms
(e.g. double spending).

b. If an intermediate node cannot be found, then:

For light nodes such as IoT devices, commitments are the only way to determine order.

COMMITMENTS

Nodes declare to the network a periodic commitment of all events they have seen.

COMMITMENTS

COMMITMENT: a Merkle Hash constructed from the events a node has witnessed
since submitting a previous commitment.

Nodes declare to the network a periodic commitment of all events they have seen.

COMMITMENTS

CONFLICTS

NODE N

ATOM Y

ATOM X

If the value of l for Commitment 1 was 100 and the value of l for Commitment 2 was
200, then Commitment 1 should contain 100 items.

If a requesting node is not returned 100 hashes when verifying, tampering of the
logical clock may have occurred.

COMMITMENTS

CONFLICTS

NODE N

ATOM Y

ATOM X

If the value of l for Commitment 1 was 100 and the value of l for Commitment 2 was
200, then Commitment 1 should contain 100 items.

If a requesting node is not returned 100 hashes when verifying, tampering of the
logical clock may have occurred.

NODE P

INFO about ATOM X

COMMITMENTS

CONFLICTS

NODE N

ATOM Y

ATOM X

If the value of l for Commitment 1 was 100 and the value of l for Commitment 2 was
200, then Commitment 1 should contain 100 items.

If a requesting node is not returned 100 hashes when verifying, tampering of the
logical clock may have occurred.

NODE P

INFO about ATOM X
- COMMITMENT for Atom X
- SET of Atoms βs witnessed after Atom X
- [...]

RESPONDS with:

COMMITMENTS

Node N queries NODE Q which delivered Atom Y:
- COMMITMENT and for Atom Y
- any of the Atoms βs
- [...]

This allows NODE N to verify

COMMITMENT VALIDATION

NODE P LC NODE Q LC

ATOM X 45 -

ATOM Y - 465

ATOM s1 46 -

ATOM s2 47 441

ATOM s3 458 -

COMMITMENTS

Node N queries NODE Q which delivered Atom Y:
- COMMITMENT and for Atom Y
- any of the Atoms βs
- [...]

This allows NODE N to verify

COMMITMENT VALIDATION

NODE P LC NODE Q LC

ATOM X 45 -

ATOM Y - 465

ATOM s1 46 -

ATOM s2 47 441

ATOM s3 458 -

Therefore ATOM X
happened before ATOM Y

TESTING ALPHANET
Performance analysis on IoT network simulation

02

ALPHANET

ALPHANET is the α-testing network of Radix DLT.

- 6 Nodes

- 1 User

GOAL
Testing the error rate and the (mean) time required to write and Atom on the ledger.

DESIGN
- Node.js server simulating 10 different autobuses writing data on the DLT at certain points in time.

- Run 6 parallel simulations for 12 times over a dedicated server (12 hours) ≃ 120 autobuses.

RESULTS

Error rate
2.73%

777.17ms

mean

Mean Confidence Interval
774.68ms ← 777.17ms →
779.65ms

TESTING BETANET
Testing tokens on local betanet emulation

03

BETANET

BETANET emulated on local computer because online betanet will be deployed in December.

GOAL
■ Getting RDX tokens from Faucet account.

■ Mint new custom tokens.

■ Transfer standard and custom tokens between two accounts.

■ Send message and payload atoms between two accounts.

■ Security checks (balance, specific tokens in wallet, sufficient funds, ...).

■ Local storing of Radix identities.

■ Symmetric key cryptography.

GET BUS TOKEN

GET DECRYPTION KEY

GET BUS LINE POSITION

EXECUTION

https://docs.google.com/file/d/1OhCxU5jKYMpqcCBDGOfBQoLA_YIsj8hw/preview

■ Dan Hughes, Radix DLT: Tempo Whitepaper - 2017
■ S.Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System - 2008
■ V. Buterin, Ethereum Whitepaper - 2014
■ L. Lamport, Time, Clocks, and the Ordering of Events in a Distributed

System - 1978
■ C.J.Fidge, Timestamps in Message-Passing Systems that preserve the

Partial Ordering - 1988
■ R.C. Merkle, Merkle Tree - 1979

 RESEARCH RESOURCES

All material: github.com/methk > RadixDLT-IoTSimulation

https://docs.radixdlt.com/kb/learn/whitepapers/tempo#commitments
https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
http://lamport.azurewebsites.net/pubs/time-clocks.pdf
http://lamport.azurewebsites.net/pubs/time-clocks.pdf
https://zoo.cs.yale.edu/classes/cs426/2012/lab/bib/fidge88timestamps.pdf
https://zoo.cs.yale.edu/classes/cs426/2012/lab/bib/fidge88timestamps.pdf
https://en.wikipedia.org/wiki/Merkle_tree

