
IOTA
Smart Contracts

Mirko Zichichi
Applied Research Engineer, IOTA Foundation
mirko.zichichi@iota.org

Blockchain and Cryptocurrencies 2024/2025

1

2

Mirko Zichichi
Applied Research Engineer

IOTA Foundation

Ph.D. in Law, Science and Technology
Universidad Politécnica de Madrid -

University of Bologna - University of Turin

“Decentralized Systems for the Protection and
Portability of Personal Data”

Supervisors:
prof. Stefano Ferretti, prof. Victor Rodriguez-Doncel

IOTA

IOTA Foundation

IOTA Foundation

European blockchain regulatory sandbox for DLTs

“The sandbox establishes a pan-European framework for
regulatory dialogues to increase legal certainty for innovative
blockchain technology solutions [...] across industry sectors such
as energy & utilities, education, healthcare, mobility, finance &
insurance, and logistics & supply chains.”

Web3 Identification Solution - A Decentralised and Secure
Approach to User Authentication

The Web3 Identification Solution caters to
the regulatory needs of Web3 and DeFi
projects and enables them to interact
seamlessly with verified users while
excluding unverified addresses.

https://ec.europa.eu/digital-building-blocks/sites/display/EBSISANDCOLLAB/European+Blockchain+Sandbox+announces+t
he+selected+projects+for+the+second+cohort#EuropeanBlockchainSandboxannouncestheselectedprojectsforthesecondco
hort-IOTAStiftung

https://ec.europa.eu/digital-building-blocks/sites/display/EBSISANDCOLLAB/European+Blockchain+Sandbox+announces+the+selected+projects+for+the+second+cohort#EuropeanBlockchainSandboxannouncestheselectedprojectsforthesecondcohort-IOTAStiftung
https://ec.europa.eu/digital-building-blocks/sites/display/EBSISANDCOLLAB/European+Blockchain+Sandbox+announces+the+selected+projects+for+the+second+cohort#EuropeanBlockchainSandboxannouncestheselectedprojectsforthesecondcohort-IOTAStiftung
https://ec.europa.eu/digital-building-blocks/sites/display/EBSISANDCOLLAB/European+Blockchain+Sandbox+announces+the+selected+projects+for+the+second+cohort#EuropeanBlockchainSandboxannouncestheselectedprojectsforthesecondcohort-IOTAStiftung

IOTA (EVM) Smart Contracts
(past)

8

- It’s a Layer 2 (L2) solution where smart
contracts are handled off-tangle in their
dedicated blockchain

- The blockchain is run by a permissioned
committee of nodes.

- Uses Ethereum technology (EVM)
- Periodically commits the state to the L1

Current Solution: IOTA EVM

- Layer 1 -> Stardust VM
- limited in its capabilities: you can’t write your own apps, but you can:

- Create fungible tokens
- Create NFTs
- Store data and/or commitments on-tangle.

- Enhancing L1 with a better operating system -> increases network’s utility

9https://wiki.iota.org/learn/smart-contracts/core_concepts/smart-contracts/

https://wiki.iota.org/learn/smart-contracts/core_concepts/smart-contracts/

10https://wiki.iota.org/learn/smart-contracts/core_concepts/smart-contracts/

https://wiki.iota.org/learn/smart-contracts/core_concepts/smart-contracts/

 Move
 the Language for Secure Next Gen

Smart Contracts

 Move

SecurityFlexibilityResource

 → Diem → Libra

https://www.theverge.com/2019/6/26/18716326/facebook-libra-cryptocurrency-blockchain-irs-starbucks

https://www.theverge.com/2019/6/26/18716326/facebook-libra-cryptocurrency-blockchain-irs-starbucks

"Hey, Libra will have smart contracts, it is important to
ensure that their programming on the blockchain is
secure"

Some Facebook chief, circa 2017.

Blackshear, Sam, et al. "Move: A Language With Programmable Resources"
https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf (2020).

"The scarcest resource in the world is not time or money, but man's brain power.

When these are used to develop software, if you can amplify brain capacity, i.e. do
more per unit of time, this is one of the most impactful things you can achieve."

https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf

Move language design

16

● Representation of transitions and state that encodes ownership of digital assets

in an open software system

● Handle two properties of that are intrinsic of physical assets:

○ Controlled Scarcity ->

duplicating existing assets should be prohibited,

creating new assets should be a privileged operation.

○ Access control ->

A participant in the system should be able to protect her assets with access control

policies.

Move’s design rationale

17Blackshear, Sam, et al. "Move: A Language With Programmable Resources"
https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf (2020).

https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf

● Indirect representation of assets

An asset is encoded using an integer, but an integer value is not the same as an asset.

● Scarcity is not extensible

The scarcity protections are hardcoded directly in the language semantics, i.e., not built-in.

● Access control is not flexible

It needs to be made clear how to extend the language to allow programmers to define custom

access control policies instead of only the signature scheme.

Critiques of the existing blockchain languages

18Blackshear, Sam, et al. "Move: A Language With Programmable Resources"
https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf (2020).

https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf

● The ability to define custom resource types with semantics inspired by linear logic

○ a resource can never be copied or implicitly discarded,

○ only moved between program storage locations.

● Move programmers can protect access to critical operations with modules

○ creation, destruction, and update

● A module declares resource types and procedures that encode the rules for its declared

resources.

Design goals: First-class Resources

19Blackshear, Sam, et al. "Move: A Language With Programmable Resources"
https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf (2020).

https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf

● Flexible code composition

○ The relationship between modules/resources/procedures is similar to OOP's

classes/objects/methods.

● The difference is that a Move module can declare multiple resource types (or zero resource

types), and procedures have no notion of a self or this value.

● No dynamic dispatch

○ Dynamic dispatching means that the compiler does not know which method is being

called and decides which method to call at runtime.

○ The static dispatching used in Move makes it easier for verification tools to verify the

bytecode and for increasing security.

Design goals: Flexibility

20Blackshear, Sam, et al. "Move: A Language With Programmable Resources"
https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf (2020).

https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf

● Move's bytecode

○ higher-level than assembly

○ yet lower-level than a source language

● It mixes

○ the use of a high-level programming language with a compiler that checks safety

properties

○ the use of a low-level untyped assembly that performs safety checks at runtime

Design goals: Security

21Blackshear, Sam, et al. "Move: A Language With Programmable Resources"
https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf (2020).

https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf

● Move's execution performs a lightweight on-chain verification.

● Limited mutability

○ Every mutation to a Move value occurs through a reference.

○ Move's bytecode verifier uses a "borrow checking" scheme similar to Rust.

● Modularity

○ Move modules enforce data abstraction and localize critical operations on resources.

Design goals: Verifiability

22Blackshear, Sam, et al. "Move: A Language With Programmable Resources"
https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf (2020).

https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf

Move

23

● Domain Specific Language for programming with assets

● Inherits memory and type safety concepts from Rust

○ Compiler catches errors that would normally go undetected in Solidity

● Treats assets as first class citizens that can travel between SC boundaries

● Programs are formally verifiable

● Built-in language level permission controls

○ Transparent what an SC can do with your assets (read only, mutate, transfer)

Move Language

24

● Move represents assets using user-defined linear resource types.

● Move has ordinary types like integers and addresses that can be copied, but

resources can only be moved.

● Move resource safety -> analogous to conservation of mass in the physical world

● Linearity:

○ prevents “double spending” by moving a resource twice

○ forces a procedure to move all of its resources, avoiding accidental loss.

Move “Resource”

25Blackshear, Sam, et al. "Resources: A safe language abstraction for money." arXiv preprint https://arxiv.org/abs/2004.05106 (2020).

https://arxiv.org/abs/2004.05106

Move “Resource”

26

Solidity Move

Blackshear, Sam, et al. "Resources: A safe language abstraction for money." arXiv preprint https://arxiv.org/abs/2004.05106 (2020).

https://arxiv.org/abs/2004.05106

Move Resource Safety

27

● At the beginning and end of a transaction script, all of the resources in the system

reside in the global state GS.

● Resource safety is a conservation property that relates the set of resources present

in state GSpre before the script to the set of resources present in state GSpost after the

script.

● In general terms, must guarantee that:

○ A resource M::T that is present in post-state GSpost was also present in

pre-state GSpre unless it is introduced by a Pack (Move bytecode for resource

creation) inside M during script execution

○ A resource M::T that was present in pre-state GSpre is also present in

post-state GSpost unless it is eliminated by an Unpack (Move bytecode for

resource deletion) inside M during script execution

Blackshear, Sam, et al. "Resources: A safe language abstraction for money." arXiv preprint https://arxiv.org/abs/2004.05106 (2020).

https://arxiv.org/abs/2004.05106

Move Executable Bytecode

28

● A Move execution platform relies on a compiler to transform source language

programs into programs in the Move bytecode language.

● The Move execution platform relies on a load-time bytecode verifier, that enforces

type, memory, and resource safety.

○ If the safety guarantees were only enforced by the compiler, an adversary could

subvert them by writing malicious bytecode directly and deploying it

Blackshear, Sam, et al. "Resources: A safe language abstraction for money." arXiv preprint https://arxiv.org/abs/2004.05106 (2020).

https://arxiv.org/abs/2004.05106

Move Persistent Global State

29

● Move execution occurs in the context of a persistent global state organized as a

partial map from account addresses -> resource data values

Blackshear, Sam, et al. "Resources: A safe language abstraction for money." arXiv preprint https://arxiv.org/abs/2004.05106 (2020).

https://arxiv.org/abs/2004.05106

Move Execution

30

● Begins by executing the main procedure of the transaction script

● A procedure is defined by a type signature and an executable body (Move bytecode

commands).

● Procedure calls are implemented using a standard call stack containing frames with

a procedure name, a set of local variables, and a return address.

Blackshear, Sam, et al. "Resources: A safe language abstraction for money." arXiv preprint https://arxiv.org/abs/2004.05106 (2020).

https://arxiv.org/abs/2004.05106

Move Module, i.e., the Smart Contract

31

● A Move module can declare both record types and procedures.

● Records can store primitive data values (booleans, addresses, …) as well as other

record values:

○ each record is declared as a resource or non-resource;

○ non-resource records cannot store resource records;

○ only resources can be stored in the global state.

● Module’s strong encapsulation:

privileged operations on the module’s declared types can only be performed by

procedures in the module

Blackshear, Sam, et al. "Resources: A safe language abstraction for money." arXiv preprint https://arxiv.org/abs/2004.05106 (2020).

https://arxiv.org/abs/2004.05106

Move References

32

● Move supports references to records and primitive values:

all reads and writes of record fields occur through a reference.

● ,References are either:

○ exclusive/mutable -> &mut

○ read-only -> &

● References are different from other Move values because they are transient

○ each reference must be created during the execution of a transaction script

and released before the end of that transaction script.

Blackshear, Sam, et al. "Resources: A safe language abstraction for money." arXiv preprint https://arxiv.org/abs/2004.05106 (2020).

https://arxiv.org/abs/2004.05106

Sui Move Flavor

33

● Blockchain agnostic: we define how accounts and transactions work

● Core VM is easily extensible with:

○ Cryptography, signature schemes, ZKP verifiers

○ Blockchain specific features (mana generation, system transactions,

account concept, etc.)

● Built-in gas metering and safe math: no undefined behavior is possible

Move Virtual Machine

34

Node Software

Blockchain Adapter

MoveVM
Interpreter
+ GasLogic

Address
format

Transaction
format

Gas metering custom logic

Consensus Storage

Cryptography, new features, ZK,...

Move Modularity

● Unified Memory - Account Based Ledger: EVM, WASM, ISC, Aptos, Core Move

○ Only sequential* execution

○ Convenient as you can access any memory location without prior request

● Partitioned Memory - Object Based Ledger: Sui Move, Cardano, Radix, Stardust, etc.

○ Parallel execution is possible, as each SC names which objects it will touch

○ Heavy usage of a particular SC doesn’t degrade others

○ Execution needs only a fraction of the memory

○ UTXO is a special case of the object ledger

Move on Account vs Object Ledger

36

Move in Aptos vs Sui

37https://academy-public.coinmarketcap.com/srd-optimized-uploads/a60864117eaa4a1b83631cc3cacd53fc.png

https://academy-public.coinmarketcap.com/srd-optimized-uploads/a60864117eaa4a1b83631cc3cacd53fc.png

38

APTOS SUI

APTOS
SUI IOTA

Move History

39

Early Move
Libra/Diem
2018-2021

Move Adapters
Sui & Aptos
2022-2023

Move 2024
Sui & Aptos Forks

Sui
Adapter

Aptos
Adapter

Move
Language

Sui Move
Language

Aptos Move
Language

IOTA flavored Move

40

- Object-Centric Global Storage

- In (Diem) Move, transactions can freely access resources, move_to and move_from.

- In IOTA Move transaction inputs are explicitly specified using unique identifiers for

objects (as opposed to resources) and packages (sets of modules).

- Addresses Represent Object IDs

- IOTA repurposes the address type as a 32-byte identifier used for both objects

(object id) and accounts (address).

- Objects with Key Ability and Globally Unique IDs

- In (Diem) Move, the key ability indicates that a type is a resource, which, along with an

account address, can serve as a key in global storage.

- In IOTA Move, the key ability denotes an object type and requires the struct's first field

to be id: UID (which becomes the object id).

Key differences between
(Diem/Aptos) Move and IOTA/Sui Move (1/2)

41https://docs.iota.org/developer/iota-101/move-overview/

https://docs.iota.org/developer/iota-101/move-overview/

A structure in IOTA Move is a custom type that contains key-value pairs, where the key is the name

of a property, and the value is what's stored.

 Struct

0. Basics - Custom Types

42https://docs.iota.org/developer/iota-101/objects/object-model

https://docs.iota.org/developer/iota-101/objects/object-model

● Abilities are keywords in IOTA Move that define how types behave at the compiler level

○ copy: the value of this type can be copied

■ usually basic types: Coin is an asset type that should not be duplicated, so it

should not have copy ability

○ drop: the value of this type can be automatically destroyed at the end of the scope

■ for types without drop ability, not destroying them manually will cause a

compilation error.

○ key: a type that can appear as a key in global storage

○ store: the value of this type can be stored (for example, in another struct)

● Custom types that have the abilities key and store are considered to be assets in IOTA Move.

○ Assets are stored in global storage and can be transferred between accounts.

0. Basics - Abilities

43https://docs.iota.org/developer/getting-started/create-a-module

https://docs.iota.org/developer/getting-started/create-a-module

● The first field of the struct must be the id of the object with type UID

 Struct Object

1. Object Basics

44https://docs.iota.org/developer/iota-101/objects/object-model

https://docs.iota.org/developer/iota-101/objects/object-model

● In Move the key ability denotes a type that can appear as a key in global storage

● Diem Move uses a (type, address)-indexed map

● IOTA Move uses a map keyed by object IDs.

1. Object Basics - Key

45https://docs.iota.org/developer/iota-101/objects/object-model

https://docs.iota.org/developer/iota-101/objects/object-model

● The only way to create a new UID for a IOTA object is to call object::new.

1. Object Basics - Create an Object

46https://docs.iota.org/developer/iota-101/objects/object-model

https://docs.iota.org/developer/iota-101/objects/object-model

● The constructor puts the object value in a local variable.

● The object can then be placed in persistent global storage.

1. Object Basics - Store an Object

47https://docs.iota.org/developer/iota-101/objects/object-model

https://docs.iota.org/developer/iota-101/objects/object-model

● Objects in IOTA can have different types of ownership, with three categories:

○ Owned mutable object -> is owned by an address/object

○ Shared mutable object -> anyone can use it in a transaction

○ Immutable object -> an object that can't be mutated, transferred or deleted.

● In other blockchains, every object is shared

○ In IOTA Move programmers have the choice to implement a particular use-case using

shared objects, owned objects, or a combination.

● In IOTA, a transaction that touches a shared object needs to pass through the consensus

mechanism. Whilst, a transaction that touches only owned objects does not need it.

2. Owned, Shared and Immutable Objects

48https://docs.iota.org/developer/iota-101/objects/shared-owned

https://docs.iota.org/developer/iota-101/objects/shared-owned

2. Owned, Shared and Immutable Objects

49

● Address Owned object: exclusively accessible to their owner

○ The owner is a 32-byte user address or object ID

○ Does not require consensus to be modified

https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

https://docs.iota.org/developer/iota-101/objects/object-ownership/shared

2. Owned, Shared and Immutable Objects

50

● Shared object: anyone can read or write this object.

○ mutable owned objects are single-writer

○ shared objects require to sequence reads and writes

https://docs.iota.org/developer/iota-101/objects/object-ownership/shared

https://docs.iota.org/developer/iota-101/objects/object-ownership/shared

● Immutable objects have no owner, so anyone can use them without the need for ordering

○ packages are immutable objects

○ you can freeze an initially mutable object

2. Owned, Shared and Immutable Objects

51https://docs.iota.org/developer/iota-101/objects/object-ownership/immutable

https://docs.iota.org/developer/iota-101/objects/object-ownership/immutable

● IOTA Move authentication mechanisms ensure only you can use objects owned by you or

shared in function calls.

● The object can be passed as a parameter to a function in two ways (core Move):

○ Pass by value

■ ColorObject

○ Pass by reference

■ &ColorObject

■ &mut ColorObject

3. Using Objects

52https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

Pass a value to a function by-value

Pass a value to a function by-value

Pass a value to a function by-value

● Pass objects by value into an entry function means the object is moved out of storage.

● Objects cannot be arbitrarily dropped and must be either consumed (e.g., transferred) or

deleted

3. Using Objects - Pass by Value

56https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

“Borrow” a value with mutable ref (&mut)

“Borrow” a value with mutable ref (&mut)

“Borrow” a value with read-only ref (&)

Wow!
Che bella!

● Read-only references (&) allow you to read data from the object

● Mutable references (&mut) allow you to mutate the data in the object.

3. Using Objects - Pass by Reference

60https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

● In IOTA Move, you can organize data structs by putting a field of struct type in another

● To embed a struct type in an object struct (with a key ability), the struct type must have the

store ability.

4. Object Wrapping

61https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

● When an object is wrapped into another object:

○ it no longer exists independently on the ledger; it becomes part of the data of the

object that wraps it;

○ is no longer findable by its objectID;

○ is no longer passable as an argument in transactions procedures calls; the only

access point is through the wrapping object (you need to pass this as argument).

● Unwrapping

○ you can then take out the wrapped object and transfer it to an address;

○ when an object is unwrapped, it becomes an independent object again;

○ wrapped objects cannot be unwrapped unless the wrapping object is destroyed

4. Object Wrapping

62https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

4. Object Wrapping

63https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

● IOTA Move provides dynamic fields with arbitrary names, added and removed on-the-fly

(not fixed at publish), which can store heterogeneous values.

● This approach overcomes the following limitations:

○ Object's have a finite set of fields, fixed when its module is declared.

○ Objects can become very large if they wrap several other objects (high gas fees).

○ It is not possible to store a collection of objects (e.g., vector) of heterogeneous types.

5. Dynamic Fields

64https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

● This function takes the Child object by value and makes it a dynamic field of the Parent

object with name b"child";

○ sender address owns the Parent object;

○ the Parent object owns the Child object, and can refer to it by the name b"child".

5. Dynamic Fields - Add field

65https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

5. Dynamic Fields - Access field

66https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

5. Dynamic Fields - Remove field

67https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

6. Transfer to Object

68https://docs.iota.org/developer/iota-101/objects/transfers/transfer-to-object

● Transfer objects to an object ID works in the same way as an object transfer to an address

(using the same functions)

● Transfering an object to another object means establishing a form of parent-child

authentication relationship.

○ Objects transferred to another object can be received by the owner of the parent object.

○ The parent (receiving) object module defines the access control for receiving a child obj.

https://docs.iota.org/developer/iota-101/objects/transfers/transfer-to-object

6. Transfer to Object - Receive

69https://docs.iota.org/developer/iota-101/objects/transfers/transfer-to-object

● After an object c has been sent to another object p, p must then receive c to do anything with it.

● The module of the type of p defines access control policies and other restrictions on c

https://docs.iota.org/developer/iota-101/objects/transfers/transfer-to-object

7. One-Time Witness (OTW)

70https://docs.iota.org/developer/iota-101/move-overview/one-time-witness

● Special type guaranteed to have at most one instance: useful for limiting certain actions to only

happen once (e.g., creating a coin). The only instance is passed to its module's init function when

its package is published. In Move, a type is considered a OTW if:

○ Its name is the same as its module's names, all uppercased.

○ It has ONLY the drop ability

○ It has no fields, or a single bool field.

https://docs.iota.org/developer/iota-101/move-overview/one-time-witness

8. Generics

71https://intro.sui-book.com/unit-three/lessons/2_intro_to_generics.html#intro-to-generics

● Generics are abstract stand-ins for concrete types or other properties.

● Conditions to enforce that the type passed into the generic must have certain abilities.

● Using generics in functions

https://intro.sui-book.com/unit-three/lessons/2_intro_to_generics.html#intro-to-generics

9. Hot Potato Pattern

72https://docs.iota.org/developer/iota-101/move-overview/patterns/hot-potato

1. This pattern requires that function B must be called immediately after function A, when

function A returns a hot potato and function B consumes it.

2. Flash loan:

a. create a `Receipt` struct that

■ cannot be discarded because it does not have `drop`,

■ cannot be put in persistent storage because it does not have `key`,

■ cannot be transferred or wrapped because it does not have `store`.

b. Have a `loan` function that requests a loan of `amount` from `lender` and returns the

`Receipt`

c. the only way to get rid of it is to call `repay` at some point forcing to pay back the debt.

https://docs.iota.org/developer/iota-101/move-overview/patterns/hot-potato

10. Capability Pattern

73https://docs.iota.org/developer/iota-101/move-overview/patterns/capabilities

● This pattern enables the authorization of specific actions with an object.

○ e.g., the UpgradeCap is used to authorize the upgrading of packages.

○ e.g. the TreasuryCap grants the authority to manage a Coin treasury functions.

https://docs.iota.org/developer/iota-101/move-overview/patterns/capabilities

Interacting with a
IOTA Move Module

74

0. Write a
IOTA Move Package

75https://docs.iota.org/developer/getting-started/create-a-module

https://docs.iota.org/developer/getting-started/create-a-module

1. Build and Publish a IOTA Move Package

76https://docs.iota.org/developer/getting-started/build-test
https://docs.iota.org/developer/getting-started/publish

$ iota move build
$ iota move test
$
$
$ iota client publish --gas-budget 5000000

https://docs.iota.org/developer/getting-started/build-test
https://docs.iota.org/developer/getting-started/publish

● Now that the package is on chain you can use the

 command

to make individual calls to package functions

2. Interact with a Package

77https://docs.iota.org/references/cli/client

$ iota client call

iota client call \
--package
0x83a30c4c3cbdd33068d36fc18d1f097f9196b79a475b7fe69f517063b376dd23 \
--module luckyplumber \
--function get_mad \
--type-args
0xd95b4510206e13fbe9413bc61183ac3b8375c8971adc54c81eeb9c96d61b5ff1::btfa
::BTFType \
--args 44
0x59f9ed7d8f7c7ed490a63e572c87705e23667570564251e3a20ceedf9c8f961d
--gas-budget 50000000 \

https://docs.iota.org/references/cli/client

● You can construct more advanced blocks of transactions using the

 command.

● In general, transactions on IOTA are composed of:

○ a number of commands

○ that execute on inputs

○ to define some results

2. Interact with a Package - PTB

78https://docs.iota.org/references/cli/ptb

$ iota client ptb

https://docs.iota.org/references/cli/ptb

● The inputs value of a PTB is value is a vector of arguments, either objects or pure values

● The commands value of a PTB is a vector of commands using inputs or results to execute code

○ TransferObjects sends (one or more) objects to a specified address

○ SplitCoins splits off (one or more) coins from a single coin. It can be any iota::coin::Coin<_>

○ MergeCoins merges (one or more) coins into a single coin

○ MakeMoveVec creates a vector of Move values

○ MoveCall invokes either an entry or a public Move function in a published package.

○ Publish creates a new package and calls the init function of each module in the package.

○ Upgrade upgrades an existing package.

● The result values is a vector of values that can be produced by each command; the type of the

value can be any arbitrary Move type, not limited to objects or pure values.

● A PTB can perform up to 1,024 unique operations in a single execution.

3. Programmable Transaction Blocks

79https://docs.iota.org/developer/iota-101/transactions/ptb/prog-txn-blocks

https://docs.iota.org/developer/iota-101/transactions/ptb/prog-txn-blocks

3. Programmable Transaction Blocks

80

$ iota client ptb \
--move-call 0xd95b4510206e13fbe9413bc61183ac3b8375c8971adc54c81eeb9c96d61b5ff1::pkg::func
"<0xd95b4510206e13fbe9413bc61183ac3b8375c8971adc54c81eeb9c96d61b5ff1::pkg1::TYPE1,0xd95b451
0206e13fbe9413bc61183ac3b8375c8971adc54c81eeb9c96d61b5ff1::pkg2::TYPE2>"
@0x0b72fb4d8106699c773bf58fd0a49ffe3a08bdd58f245946d160ed5463f7ba47 99 true \
--assign result_variable \
--move-call iota::tx_context::sender \
--assign sender \
--transfer-objects "[result_variable.2]" sender \
--move-call 0xd95b4510206e13fbe9413bc61183ac3b8375c8971adc54c81eeb9c96d61b5ff1::pkg::func2
"<0xd95b4510206e13fbe9413bc61183ac3b8375c8971adc54c81eeb9c96d61b5ff1::pkg1::TYPE1"
@0x0b72fb4d8106699c773bf58fd0a49ffe3a08bdd58f245946d160ed5463f7ba47 result_variable.0 \
--gas-budget 50000000

https://docs.iota.org/references/cli/ptb

https://docs.iota.org/references/cli/ptb

● The public modifier allows a function to be called from a PTB and also from other modules

○ NO restrictions on parameters

● The entry modifier allows a function to be called directly from a PTB as a module "entrypoint".

○ entry functions parameters must be inputs to the PTB (not results of previous command)

○ only allowed to return types that have drop

● Use the entry modifier when:

○ You want strong guarantees that your function is not being combined with third-party

module functions (e.g., swap protocol that does not want a flash loan)

○ public function signatures must be maintained by upgrades (entry function not).

○ It is also possible to create a public entry function, can be called by other modules

4. public vs entry functions

81https://docs.iota.org/developer/iota-101/move-overview/entry-functions

https://docs.iota.org/developer/iota-101/move-overview/entry-functions

● BCS is a serialization format developed in the context of the Diem blockchain

○ now extensively used in most of the blockchains based on Move (IOTA, Sui, Aptos, 0L).

● BCS is not only used in the Move VM, but also used in transaction and event coding.

5. Binary Canonical Serialization (BCS)

82
https://docs.iota.org/references/ts-sdk/bcs
https://github.com/zefchain/bcs
https://www.npmjs.com/package/@mysten/bcs

var { bcs, fromHEX } = require('@mysten/bcs');
const Calzone = bcs.struct('Calzone', {
 flour: bcs.u16(),
 tomato_sauce: bcs.u16(),
 cheese: bcs.u16(),
});
const hex = "0a000300620272011200c800b4000000"
const calzone = Calzone.parse(fromHEX(hex));

https://docs.iota.org/references/ts-sdk/bcs
https://github.com/zefchain/bcs
https://www.npmjs.com/package/@mysten/bcs

● Collections

● Events

● Package upgrades

● Proper Testing

● Clock and Random objects

● …

What’s left?

83

- https://docs.iota.org/developer/iota-101/move-overview/
- https://docs.iota.org/references/cli/client
- https://intro.sui-book.com/unit-one/lessons/1_set_up_environment.html

https://docs.iota.org/developer/iota-101/move-overview/
https://docs.iota.org/references/cli/client
https://intro.sui-book.com/unit-one/lessons/1_set_up_environment.html

Thank you!

Mirko Zichichi

Applied Research Engineer, IOTA Foundation
mirko.zichichi@iota.org 84

The code and documentation
must NOT be shared outside!

85

