
Law, Science and Technology MSCA ITN EJD n. 814177

Liuwen Yu^{1,3}, **Mirko Zichichi**^{2,3}, Réka Markovich¹, Amro Najjar¹

¹University of Luxembourg ²Universidad Politécnica de Madrid ³University of Bologna Intelligent Human-input-based Blockchain Oracle (IHiBO)

1. Introduction

- 2. Conflict Resolution
- 3. Blockchain
- 4. IHibO
- 5. Evaluation
- 6. Conclusion

Introduction

The Problem

$\textbf{General} \; \textbf{Problem} \rightarrow \textit{Trust in decision-making process}$

The Problem

$\textbf{General} \; \textbf{Problem} \rightarrow \textit{Trust in decision-making process}$

 Trust service ← persons or organization acting on behalf of another person to deal with the tasks involving finances.

The Problem

$\textbf{General} \; \textbf{Problem} \rightarrow \textit{Trust in decision-making process}$

- Trust service ← persons or organization acting on behalf of another person to deal with the tasks involving finances.
- Fund management ← fund managers manage on behalf of their investors a
 portfolio of securities (stock, bonds, etc.) and perform risk management.

Specific: Trust problem that emerges in the fund management

Specific: Trust problem that emerges in the fund management

- **reservation** and **lack of documentation** of the decision-making process of investments
- legislators declare investors right to check the relevant activities in order to give_{2/26}

Perform the **decision-making processes of fund management** in a transparent and traceable way through a framework that integrates:

Perform the **decision-making processes of fund management** in a transparent and traceable way through a framework that integrates:

Formal Argumentation

Perform the **decision-making processes of fund management** in a transparent and traceable way through a framework that integrates:

- \cdot Formal Argumentation
- Multi-Agent Negotiation

Perform the **decision-making processes of fund management** in a transparent and traceable way through a framework that integrates:

- \cdot Formal Argumentation
- Multi-Agent Negotiation
- Blockchain and Smart Contracts

• Is *formal argumentation* **suited for modelling the decision-making process** of fund management?

- Is *formal argumentation* **suited for modelling the decision-making process** of fund management?
 - multi-lateral interaction and reasoning

- Is *formal argumentation* **suited for modelling the decision-making process** of fund management?
 - multi-lateral interaction and reasoning
 - incomplete and inconsistent information

- Is *formal argumentation* **suited for modelling the decision-making process** of fund management?
 - multi-lateral interaction and reasoning
 - incomplete and inconsistent information
 - $\cdot \, \rightarrow \, {\rm help}$ to explain why a claim or a decision is made

- Is *formal argumentation* **suited for modelling the decision-making process** of fund management?
 - multi-lateral interaction and reasoning
 - incomplete and inconsistent information
 - $\cdot \,
 ightarrow$ help to explain why a claim or a decision is made
- · Multi-agent negotiation is used to determine the quantities and investment timing

- Is *formal argumentation* **suited for modelling the decision-making process** of fund management?
 - multi-lateral interaction and reasoning
 - incomplete and inconsistent information
 - $\cdot \, \rightarrow$ help to explain why a claim or a decision is made
- Multi-agent negotiation is used to determine the quantities and investment timing
- Blockchain used not only to trace the output of a decision-making process
 - \rightarrow trace argumentation and negotiation and make it auditable

Conflict Resolution

- portfolio management decisions \rightarrow can be based on $\mbox{arguments}$ and $\mbox{counter-arguments}$

- portfolio management decisions \rightarrow can be based on $\mbox{arguments}$ and $\mbox{counter-arguments}$
- · Different fund managers provide their arguments from their own research

- portfolio management decisions \rightarrow can be based on $\mbox{arguments}$ and $\mbox{counter-arguments}$
- Different fund managers provide their arguments from their own research
- Argumentation Framework (AF) by *Dung (1995)*:
 - directed graphs
 - nodes are arguments
 - arrows are attack relations

- portfolio management decisions \rightarrow can be based on $\mbox{arguments}$ and $\mbox{counter-arguments}$
- Different fund managers provide their arguments from their own research
- Argumentation Framework (AF) by *Dung (1995)*:
 - directed graphs
 - nodes are arguments
 - arrows are attack relations
- Agent Argumentation Framework(AAF) ← argument belongs to one or more agents

Portfolio Management Example

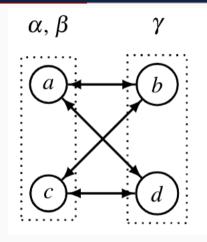


Figure 1: Agent Argumentation Framework

- $\{\alpha, \beta, \gamma\}$ = fund managers' agents
- a: Buy the stocks, since the company just donated to charities
- b: *Sell* the stocks, since the company has *poor sales* performance.
- c: Buy the stocks, since the company is going to adopt a new technology which will bring huge benefit.
- d: Sell the stocks, since there is evidence of charity fraud

Preference-based Argumentation Framework (PAF)

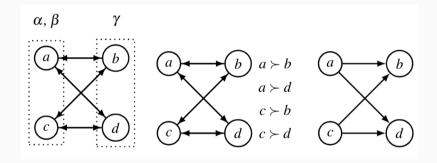
 Social Semantics → reduction of an Agent Argumentation Framework (AAF) to a Preference-based Argumentation Framework (PAF) by counting the number of agents that have an argument.

Preference-based Argumentation Framework (PAF)

- Social Semantics → reduction of an Agent Argumentation Framework (AAF) to a Preference-based Argumentation Framework (PAF) by counting the number of agents that have an argument.
- [SAP] Social Reductions of AAF to PAF intermediary step for social agent semantics, given an $AAF = \langle \mathscr{A}, \rightarrow, \mathscr{S}, \sqsubset \rangle$:
 - SAP(AAF) = $\langle \mathscr{A}, \rightarrow, \succ \rangle$, with
 - $\succ = \{a \succ b | |\mathscr{S}_a| > |\mathscr{S}_b|\}.$

Preference-based Argumentation Framework (PAF)

- Social Semantics → reduction of an Agent Argumentation Framework (AAF) to a Preference-based Argumentation Framework (PAF) by counting the number of agents that have an argument.
- [SAP] Social Reductions of AAF to PAF intermediary step for social agent semantics, given an $AAF = \langle \mathscr{A}, \rightarrow, \mathscr{S}, \sqsubset \rangle$:


SAP(AAF) =
$$\langle \mathscr{A}, \rightarrow, \succ \rangle$$
, with

 $\succ = \{a \succ b ||\mathscr{S}_a| > |\mathscr{S}_b|\}.$

- [SR] Social Reductions of AAF to AF SR(AAF) = PR(SAP(AAF)), where PR is a reduction PAF to AF such as:
 - **PR(PAF)** = $\langle \mathscr{A}, \rightarrow' \rangle$, where

 $\rightarrow' = \{a \rightarrow' b | a \rightarrow b, b \not\succ a, \text{ or } b \rightarrow a, \text{ not } a \rightarrow b, a \succ b, \text{ or } a \rightarrow b, \text{ not } b \rightarrow a\}.$

Portfolio Management Example Social Reduction

Figure 2: Social reduction

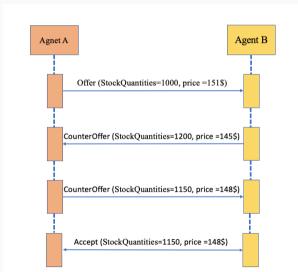
Then we can calculate the only acceptable set $\{a, c\}$. The set tells the final decision is to buy the stocks.

Autonomous Agents and Negotiation

• Numbers of stocks to buy and the buy timing?

Autonomous Agents and Negotiation

- Numbers of stocks to buy and the buy timing?
- **Multi-agent system** to represent the subjectivity and nuances of different expert opinions and to help the different stakeholders finding agreements.


Autonomous Agents and Negotiation

- Numbers of stocks to buy and the buy timing?
- Multi-agent system to represent the subjectivity and nuances of different expert opinions and to help the different stakeholders finding agreements.
- Automated negotiation is one taking place among autonomous agents

Autonomous Agents and Negotiation

- Numbers of stocks to buy and the buy timing?
- **Multi-agent system** to represent the subjectivity and nuances of different expert opinions and to help the different stakeholders finding agreements.
- Automated negotiation is one taking place among autonomous agents
- The problem being negotiated can be described by one or more **issues** and the **priority** given to each issue can differ from one negotiator to another.

Portfolio Management Example Negotiation

Blockchain

Trust Oracles Smart Contracts

Blockchain Trust

+ distributed ledger and immutability \rightarrow enhances trust

Blockchain Trust

- + distributed ledger and immutability \rightarrow enhances trust
- transactions stored in blockchains are **auditable** and **traceable**

Blockchain Trust

- + distributed ledger and immutability \rightarrow enhances trust
- transactions stored in blockchains are **auditable** and **traceable**
- + Distributed Ledger Technologies \rightarrow potential to revolutionize financial agreements.

Blockchain Trust

- + distributed ledger and immutability \rightarrow enhances trust
- transactions stored in blockchains are **auditable** and **traceable**
- Distributed Ledger Technologies \rightarrow potential to revolutionize financial agreements.
- fund managers can trade securities on behalf of the investors.

+ $\mathbf{Oracle} \rightarrow \mathsf{system}$ that act as a bridge between DLTs and the "outside" world

- + $\textbf{Oracle} \rightarrow \textbf{system}$ that act as a bridge between DLTs and the "outside" world
- Retrieve, verify and digest data into distributed ledgers:

- + $\textbf{Oracle} \rightarrow \textbf{system}$ that act as a bridge between DLTs and the "outside" world
- Retrieve, verify and digest data into distributed ledgers:
 - 1. software: get data from online sources and insert these to DLT, e.g. stocks prices;

- \cdot $\mathbf{Oracle} \rightarrow$ system that act as a bridge between DLTs and the "outside" world
- Retrieve, verify and digest data into distributed ledgers:
 - 1. *software*: get data from online sources and insert these to DLT, e.g. stocks prices;
 - 2. hardware: retrieve data from the physical world through sensors, e.g. weather IoT;

- \cdot $\mathbf{Oracle} \rightarrow$ system that act as a bridge between DLTs and the "outside" world
- Retrieve, verify and digest data into distributed ledgers:
 - 1. software: get data from online sources and insert these to DLT, e.g. stocks prices;
 - 2. hardware: retrieve data from the physical world through sensors, e.g. weather IoT;
 - 3. *human*: individuals manually insert data to DLT, e.g. dispute resolution judge.

• Some DLTs enable is the possibility to execute Smart Contracts

- Some DLTs enable is the possibility to execute Smart Contracts
- instructions that, once deployed on the ledger, cannot be altered

- Some DLTs enable is the possibility to execute Smart Contracts
- instructions that, once deployed on the ledger, cannot be altered
- *each DLT node* execute these instructions and verify that the **output is equal** for all the other nodes in the network

- Some DLTs enable is the possibility to execute Smart Contracts
- instructions that, once deployed on the ledger, cannot be altered
- *each DLT node* execute these instructions and verify that the **output is equal** for all the other nodes in the network
- handle data coming from other smart contracts or from the user's inputs, e.g. smart contracts cannot fetch a webpage on the Internet,

- Some DLTs enable is the possibility to execute Smart Contracts
- instructions that, once deployed on the ledger, cannot be altered
- *each DLT node* execute these instructions and verify that the **output is equal** for all the other nodes in the network
- handle data coming from other smart contracts or from the user's inputs, e.g. smart contracts cannot fetch a webpage on the Internet,
- store data in the (immutable) ledger

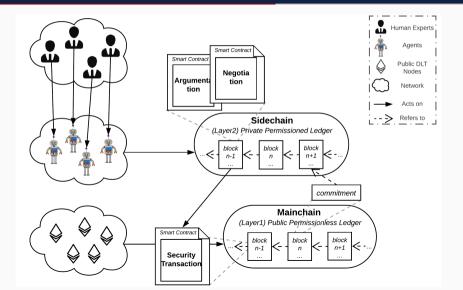
IHibO

• A cross-chain oracle that enables the *execution and traceability* of argumentation and negotiation processes

- A cross-chain oracle that enables the *execution and traceability* of argumentation and negotiation processes
- \cdot Combines

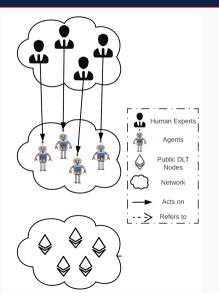
- A cross-chain oracle that enables the *execution and traceability* of argumentation and negotiation processes
- \cdot Combines
 - Formal Argumentation

- A cross-chain oracle that enables the *execution and traceability* of argumentation and negotiation processes
- \cdot Combines
 - Formal Argumentation
 - · Automated Negotiation

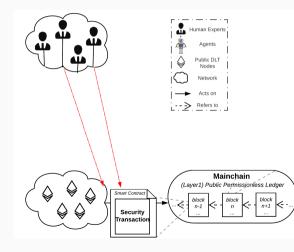

- A cross-chain oracle that enables the *execution and traceability* of argumentation and negotiation processes
- \cdot Combines
 - Formal Argumentation
 - Automated Negotiation
 - DLT Framework

- A cross-chain oracle that enables the *execution and traceability* of argumentation and negotiation processes
- \cdot Combines
 - Formal Argumentation
 - Automated Negotiation
 - DLT Framework
- Provides transparency and auditability

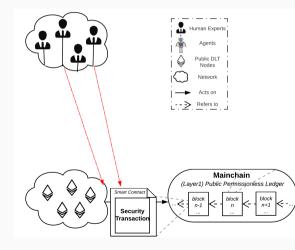
- A cross-chain oracle that enables the *execution and traceability* of argumentation and negotiation processes
- \cdot Combines
 - Formal Argumentation
 - Automated Negotiation
 - DLT Framework
- Provides transparency and auditability
- Involves the intervention of human experts

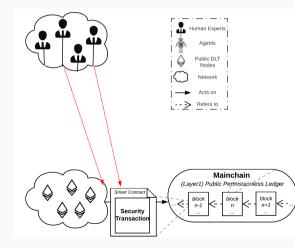

IHiBO Architecture DeFi Sidechain Smart Contracts

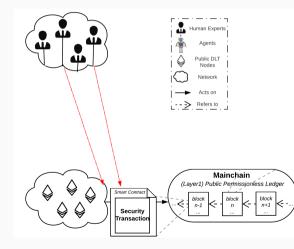
IHiBO Architecture

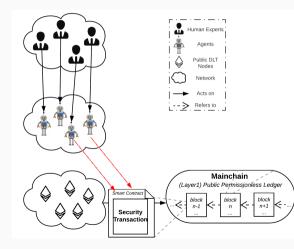


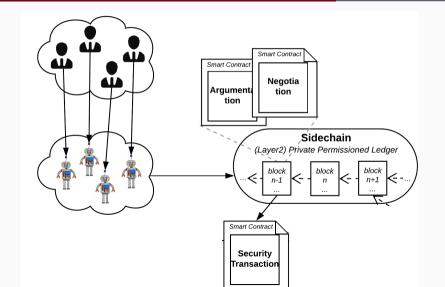
IHiBO Architecture DeFi Sidechain Smart Contracts


IHiBO Architecture


- Human Expert, the one who takes most of the decisions and that gives inputs to the agent;
- Agent, the one that can assist human experts and that directly interact with the DLT.
- **Public DLT Node**, a node that builds the network of a public DLT, such as the **Ethereum** blockchain

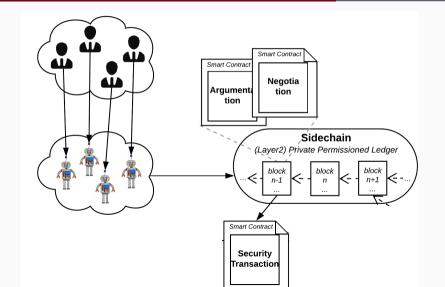

 DeFi → smart contract based financial infrastructures that are non-custodial, permissionless, openly verifiable and composable.


- DeFi → smart contract based financial infrastructures that are non-custodial, permissionless, openly verifiable and composable.
- Decentralized Exchanges (DEX) → non-custodial exchange of on-chain digital assets in the Ethereum blockchain


- DeFi → smart contract based financial infrastructures that are non-custodial, permissionless, openly verifiable and composable.
- Decentralized Exchanges (DEX) → non-custodial exchange of on-chain digital assets in the Ethereum blockchain
- direct selling/buying of traditional stocks that have been "tokenized"

- DeFi → smart contract based financial infrastructures that are non-custodial, permissionless, openly verifiable and composable.
- Decentralized Exchanges (DEX) → non-custodial exchange of on-chain digital assets in the Ethereum blockchain
- direct selling/buying of traditional stocks that have been "tokenized"
- Smart contracts that implements swapping tokens and cryptocurr. → SecurityTransaction

- DeFi → smart contract based financial infrastructures that are non-custodial, permissionless, openly verifiable and composable.
- Decentralized Exchanges (DEX) → non-custodial exchange of on-chain digital assets in the Ethereum blockchain
- direct selling/buying of traditional stocks that have been "tokenized"
- Smart contracts that implements swapping tokens and cryptocurr. → SecurityTransaction


18 / 26

- second layer solution on top of the mainchain (i.e. Ethereum public blockchain)
- for executing conflict resolution processes

- second layer solution on top of the mainchain (i.e. Ethereum public blockchain)
- for executing conflict resolution processes
- \cdot to support execution \log can be later audited

- second layer solution on top of the mainchain (i.e. Ethereum public blockchain)
- for executing conflict resolution processes
- \cdot to support execution \log can be later audited
- Ethereum protocol distributed among nodes in a private permissioned network

- second layer solution on top of the mainchain (i.e. Ethereum public blockchain)
- for executing conflict resolution processes
- \cdot to support execution \log can be later audited
- Ethereum protocol distributed among nodes in a private permissioned network
- Proof-of-Authority (PoA) consensus algorithm

18 / 26

Argumentation Smart Contract

• A **directed graph** data structure, nodes are **arguments** and edges are **attacks**

Argumentation

- paf:DirectedGraph
- agentsPreferences:Map<address, Set>
- generatedGraphs:DirectedGraph[]
- extensions:Set[]
- + insertArgument(string):uint
- + supportArgument(uint):void
- + insertAttack(uint, uint, string):uint
- + pafReductionToAf():uint
- + enumeratingPreferredExtensions(uint):Set

Argumentation Smart Contract

Argumentation

- paf:DirectedGraph
- agentsPreferences:Map<address. Set>
- generatedGraphs:DirectedGraph[]
- extensions:Set[]
- + insertArgument(string):uint
- + supportArgument(uint):void
- + insertAttack(uint, uint, string):uint
- + pafReductionToAf():uint
- + enumeratingPreferredExtensions(uint):Set

- A directed graph data structure, nodes are arguments and edges are attacks
- Each agent invokes insertArgument() and insertAttacks()

Argumentation Smart Contract

Argumentation

- paf:DirectedGraph
- agentsPreferences:Map<address, Set>
- generatedGraphs:DirectedGraph[]
- extensions:Set[]
- + insertArgument(string):uint
- + supportArgument(uint):void
- + insertAttack(uint, uint, string):uint
- + pafReductionToAf():uint
- + enumeratingPreferredExtensions(uint):Set

- A **directed graph** data structure, nodes are **arguments** and edges are **attacks**
- Each agent invokes insertArgument() and insertAttacks()
- Also set as "preferred" an existing argument (supportArgument())

Argumentation Smart Contract

Argumentation

- paf:DirectedGraph
- agentsPreferences:Map<address, Set>
- generatedGraphs:DirectedGraph[]
- extensions:Set[]
- + insertArgument(string):uint
- + supportArgument(uint):void
- + insertAttack(uint, uint, string):uint
- + pafReductionToAf():uint
- + enumeratingPreferredExtensions(uint):Set

- A **directed graph** data structure, nodes are **arguments** and edges are **attacks**
- Each agent invokes insertArgument() and insertAttacks()
- Also set as "preferred" an existing argument (supportArgument())
- Reductions of PAF to AF can be invoked and executed directly (*pafReductionToAfPr(*))

IHiBO Architecture DeFi Sidechain Smart Contracts

Argumentation Smart Contract

Argumentation

- paf:DirectedGraph
- agentsPreferences:Map<address, Set>
- generatedGraphs:DirectedGraph[]
- extensions:Set[]
- + insertArgument(string):uint
- + supportArgument(uint):void
- + insertAttack(uint, uint, string):uint
- + pafReductionToAf():uint
- + enumeratingPreferredExtensions(uint):Set

- A **directed graph** data structure, nodes are **arguments** and edges are **attacks**
- Each agent invokes insertArgument() and insertAttacks()
- Also set as "preferred" an existing argument (supportArgument())
- Reductions of PAF to AF can be invoked and executed directly (*pafReductionToAfPr(*))
- Finally, an **extension** can be found for the previously obtained AF (*enumeratingPreferredExtensions(*))

IHiBO Architecture DeFi Sidechain Smart Contracts

Argumentation Smart Contract

Argumentation

- paf:DirectedGraph
- agentsPreferences:Map<address, Set>
- generatedGraphs:DirectedGraph[]
- extensions:Set[]
- + insertArgument(string):uint
- + supportArgument(uint):void
- + insertAttack(uint, uint, string):uint
- + pafReductionToAf():uint
- + enumeratingPreferredExtensions(uint):Set

- A **directed graph** data structure, nodes are **arguments** and edges are **attacks**
- Each agent invokes insertArgument() and insertAttacks()
- Also set as "preferred" an existing argument (supportArgument())
- Reductions of PAF to AF can be invoked and executed directly (*pafReductionToAfPr(*))
- Finally, an **extension** can be found for the previously obtained AF (*enumeratingPreferredExtensions(*))
- This possibly provides a set of **arguments that lead to a final decision**.

• For automated negotiations on several issues on the arguments provided by the argumentation process

- For automated negotiations on several issues on the arguments provided by the argumentation process
- A data structure holds the data needed during a negotiation thread

- For automated negotiations on several issues on the arguments provided by the argumentation process
- A data structure holds the data needed during a negotiation thread
- Each agent can **start a new negotiation** for a specific set of issues (*newNegotiation(*)).

- For automated negotiations on several issues on the arguments provided by the argumentation process
- A data structure holds the data needed during a negotiation thread
- Each agent can **start a new negotiation** for a specific set of issues (*newNegotiation(*)).
- Each agent has its own decision model executed **off-chain**, that allows this to evaluate the value of an offer received, e.g. *a time dependent tactic*.

- For automated negotiations on several issues on the arguments provided by the argumentation process
- A data structure holds the data needed during a negotiation thread
- Each agent can **start a new negotiation** for a specific set of issues (*newNegotiation(*)).
- Each agent has its own decision model executed **off-chain**, that allows this to evaluate the value of an offer received, e.g. *a time dependent tactic*.
- Based on this evaluation, an agent:

- For automated negotiations on several issues on the arguments provided by the argumentation process
- A data structure holds the data needed during a negotiation thread
- Each agent can **start a new negotiation** for a specific set of issues (*newNegotiation(*)).
- Each agent has its own decision model executed **off-chain**, that allows this to evaluate the value of an offer received, e.g. *a time dependent tactic*.
- Based on this evaluation, an agent:
 - makes a new offer (newOffer()) providing a new set of values related to the issues

- For automated negotiations on several issues on the arguments provided by the argumentation process
- A data structure holds the data needed during a negotiation thread
- Each agent can **start a new negotiation** for a specific set of issues (*newNegotiation(*)).
- Each agent has its own decision model executed **off-chain**, that allows this to evaluate the value of an offer received, e.g. *a time dependent tactic*.
- Based on this evaluation, an agent:
 - makes a new offer (newOffer()) providing a new set of values related to the issues
 - accepts (accept()) the other agent's offer

- For automated negotiations on several issues on the arguments provided by the argumentation process
- A data structure holds the data needed during a negotiation thread
- Each agent can **start a new negotiation** for a specific set of issues (*newNegotiation(*)).
- Each agent has its own decision model executed **off-chain**, that allows this to evaluate the value of an offer received, e.g. *a time dependent tactic*.
- Based on this evaluation, an agent:
 - makes a new offer (newOffer()) providing a new set of values related to the issues
 - accepts (accept()) the other agent's offer
 - refuses it (by not providing input to the smart contract).

- For automated negotiations on several issues on the arguments provided by the argumentation process
- A data structure holds the data needed during a negotiation thread
- Each agent can **start a new negotiation** for a specific set of issues (*newNegotiation(*)).
- Each agent has its own decision model executed **off-chain**, that allows this to evaluate the value of an offer received, e.g. *a time dependent tactic*.
- Based on this evaluation, an agent:
 - makes a new offer (newOffer()) providing a new set of values related to the issues
 - accepts (accept()) the other agent's offer
 - refuses it (by not providing input to the smart contract).
- The *accept()* method **directly enact the process** of interaction with the SecurityTransaction smart contract on the **mainchain**.

Evaluation

• Ethereum private network using PoA, with optimal configuration, can reach up to 1000 transactions per second

- Ethereum private network using PoA, with optimal configuration, can reach up to 1000 transactions per second
- Our experiments focus on the scalability in terms of arguments and negotiation issues number

- Ethereum private network using PoA, with optimal configuration, can reach up to 1000 transactions per second
- Our experiments focus on the scalability in terms of arguments and negotiation issues number
- We measure our experiments in terms of **gas cost**, a feature of the Ethereum protocol

- Ethereum private network using PoA, with optimal configuration, can reach up to 1000 transactions per second
- Our experiments focus on the scalability in terms of arguments and negotiation issues number
- We measure our experiments in terms of **gas cost**, a feature of the Ethereum protocol
- Gas is a unit that measures the amount of computational effort that takes to execute operations in Ethereum smart contracts

Scalability Gas Cost Scalability

Portfolio Management Example

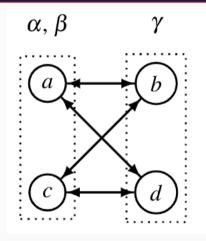
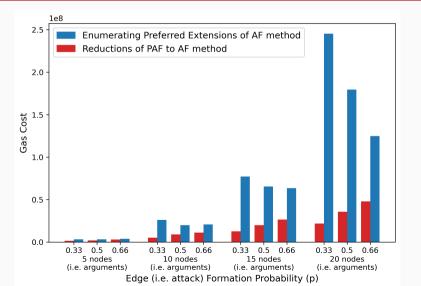
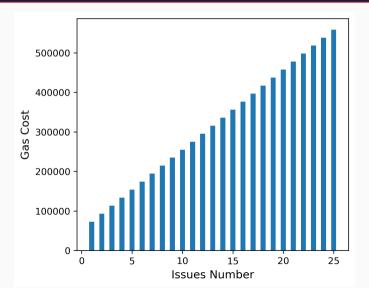


Figure 3: Agent Argumentation Framework


- $\{\alpha, \beta, \gamma\}$ = fund managers' agents
- a: Buy the stocks, since the company just donated to charities
- b: *Sell* the stocks, since the company has *poor sales* performance.
- c: Buy the stocks, since the company is going to adopt a new technology which will bring huge benefit.
- d: Sell the stocks, since there is evidence of charity fraud

Portfolio Management Example Gas Cost

Smart Contract	Method	Occurrency	Gas Cost
Argumentation	insertArgument()	а	157 470
Argumentation	supportArgument()	$\leq a \times (n-1)$	80 491
Argumentation	insertAttack()	$\leq a \times (a-1)$	215011
Argumentation	pafReductionToAfPr()	1	1877277
Argumentation	enumeratingPreferred Extensions()	1	1 412 065
Negotiation	newNegotiation()	1	104961
Negotiation	newOffer()	t	52 438
Negotiation	accept()	1	64211


Scalability Gas Cost Scalability

Arguments Number

Scalability Gas Cost Scalability

Negotiation Issues Number

• Proposal of an integrated framework incorporating formal argumentation and negotiation within a blockchain framework.

- Proposal of an integrated framework incorporating formal argumentation and negotiation within a blockchain framework.
- We explained our idea in a fund management scenario, but our proposal is not only bound to this domain.

- Proposal of an integrated framework incorporating formal argumentation and negotiation within a blockchain framework.
- We explained our idea in a fund management scenario, but our proposal is not only bound to this domain.
- The results of our experiments shows that the use of a second layer DLT, allows to securely operate without too many performance limitations *in bounded use cases*, while maintaining a high level of traceability.

- Proposal of an integrated framework incorporating formal argumentation and negotiation within a blockchain framework.
- We explained our idea in a fund management scenario, but our proposal is not only bound to this domain.
- The results of our experiments shows that the use of a second layer DLT, allows to securely operate without too many performance limitations *in bounded use cases*, while maintaining a high level of traceability.
- Future work:

- Proposal of an integrated framework incorporating formal argumentation and negotiation within a blockchain framework.
- We explained our idea in a fund management scenario, but our proposal is not only bound to this domain.
- The results of our experiments shows that the use of a second layer DLT, allows to securely operate without too many performance limitations *in bounded use cases*, while maintaining a high level of traceability.
- Future work:
 - Provide and adapt to a high level of adaptability in the decisions of the fund management (investors' preferences, attitude (aggressive or moderate) and the financial environment bull or bear)

- Proposal of an integrated framework incorporating formal argumentation and negotiation within a blockchain framework.
- We explained our idea in a fund management scenario, but our proposal is not only bound to this domain.
- The results of our experiments shows that the use of a second layer DLT, allows to securely operate without too many performance limitations *in bounded use cases*, while maintaining a high level of traceability.
- Future work:
 - Provide and adapt to a high level of adaptability in the decisions of the fund management (investors' preferences, attitude (aggressive or moderate) and the financial environment bull or bear)
 - Explainable AI, how we can make the decision-making process explainable for different types of users (experts, non-experts, etc.) and for different purposes (e.g. transparency, debugging, etc.).