Law, Science and Technology MSCA ITN EJD n. 814177

Mirko Zichichi^{1,2}, Luca Serena², Stefano Ferretti³, Gabriele D'Angelo²

¹Universidad Politécnica de Madrid ²University of Bologna ³University of Urbino "Carlo Bo" Towards Decentralized Complex Queries over Distributed Ledgers: a Data Marketplace Use-case

- 1. Introduction
- 2. Use Case
- 3. Hypercube DHT
- 4. Performance Evaluation
- 5. Conclusion

Introduction

DLT and DFS are being increasingly used to create **common, decentralized and trustless infrastructures** where participants interact and collaborate in Peer-to-Peer interactions. They enable:

- DLT and DFS are being increasingly used to create **common, decentralized and trustless infrastructures** where participants interact and collaborate in Peer-to-Peer interactions. They enable:
 - secure transactions between **untrusted parties** through consensus mechanisms

- DLT and DFS are being increasingly used to create **common, decentralized and trustless infrastructures** where participants interact and collaborate in Peer-to-Peer interactions. They enable:
 - secure transactions between **untrusted parties** through consensus mechanisms
 - high data **availability**

DLT and DFS are being increasingly used to create **common, decentralized and trustless infrastructures** where participants interact and collaborate in Peer-to-Peer interactions. They enable:

- secure transactions between **untrusted parties** through consensus mechanisms
- high data **availability**
- ability to automate and enforce processes (through smart contracts)

Query Issues

1) data stored in DLTs and DFS are usually **unstructured** and need to be **filtered and indexed** before any **complex query**

Query Issues

data stored in DLTs and DFS are usually unstructured and need to be filtered and indexed before any complex query there are no diffused efficient mechanisms to query a certain type of data, that do not involve centralization (e.g. index data in a central database)

Our work

 \cdot System for the search of data in DLTs and DFS according to their content or meaning

Our work

- System for the search of data in DLTs and DFS according to their content or meaning
- Distributed Hash Table (DHT) as a layer placed over DLTs: DHT \rightarrow distributed data structure that maps "keys" into "values".

Our work

- System for the search of data in DLTs and DFS according to their content or meaning
- Distributed Hash Table (DHT) as a layer placed over DLTs: DHT → distributed data structure that maps "keys" into "values".
- Hypercube to organise the topological structure of such a DHT network.

Use Case

Decentralized Data Marketplace Use Case

 DFS → used to store data in an encrypted form, offering high availability

Decentralized Data Marketplace IOTA MAM

Decentralized Data Marketplace IOTA MAM

- DFS → used to store data in an encrypted form, offering high availability
- A decentralized access control
 system → to get the data from the DFS once they have been authorized
- Smart contracts have the ability to provide a distributed authorization mechanism following a policy

- DFS → used to store data in an encrypted form, offering high availability
- A decentralized access control
 system → to get the data from the DFS once they have been authorized
- Smart contracts have the ability to provide a distributed authorization mechanism following a policy
- A **DLT** such as **IOTA** enable the data indexing and validation (in form of hash pointers)

IOTA Masked Authentication Messaging Channels

- $\ensuremath{\text{IOTA}} \rightarrow$ network of nodes that holds a distributed ledger where transactions are validated without fees

IOTA Masked Authentication Messaging Channels

- $\ensuremath{\text{IOTA}} \rightarrow$ network of nodes that holds a distributed ledger where transactions are validated without fees
- Masked Authenticated Messaging (MAM) \rightarrow communication protocol that adds the functionality to emit and access an encrypted data channels over IOTA

Decentralized Data Marketplace IOTA MAM

MAM Channels and Data Retrieval

• To obtain information from a message within a MAM channel, it is necessary to know the exact address of the message or of the channel, i.e. the **root value**

MAM Channels and Data Retrieval

- To obtain information from a message within a MAM channel, it is necessary to know the exact address of the message or of the channel, i.e. the **root value**
- QEZXKW9HOPYNUGPNLOBXKZJEI9UJTNTACFVFNLYLX

MAM Channels and Data Retrieval

- To obtain information from a message within a MAM channel, it is necessary to know the exact address of the message or of the channel, i.e. the **root value**
- QEZXKW9HOPYNUGPNLOBXKZJEI9UJTNTACFVFNLYLX
- this root, and in general DLT addresses, **do not provide any information** related to the type and kind of data

MAM Channels and Data Retrieval

- To obtain information from a message within a MAM channel, it is necessary to know the exact address of the message or of the channel, i.e. the **root value**
- QEZXKW9HOPYNUGPNLOBXKZJEI9UJTNTACFVFNLYLX
- this root, and in general DLT addresses, **do not provide any information** related to the type and kind of data
- in our system every single message is indexed by a keyword set, that is then exploited to search for specific kinds of contents ⇒

Decentralized Data Marketplace IOTA MAM

Hypercube DHT

Layer Two Hypercube Keywords Search

Layer Two Lookup Scheme

• DLT P2P Network

Layer Two Hypercube Keywords Search

Layer Two Lookup Scheme

- DLT P2P Network
- Data are stored in a DFS and/or referenced in a IOTA MAM Channels.

Layer Two Lookup Scheme

- DLT P2P Network
- Data are stored in a DFS and/or referenced in a IOTA MAM Channels.
- \cdot Layer two solution \rightarrow MAM messages associated to a keyword set in a DHT

 $\cdot ~\mathbf{0} \leftarrow \mathsf{set} ~\mathsf{of} ~\mathsf{all}$ MAM messages in IOTA

- $\cdot ~ \mathbf{O} \leftarrow \mathsf{set} ~ \mathsf{of} ~ \mathsf{all} ~ \mathsf{MAM} ~ \mathsf{messages} ~ \mathsf{in} ~ \mathsf{IOTA}$
- DHT for mapping $\mathbf{o} \in O$ to a keyword set $K_o \subseteq W$ (*W* is the keyword space)

- $\cdot ~ \mathbf{0} \leftarrow \mathsf{set} ~ \mathsf{of} ~ \mathsf{all} ~ \mathsf{MAM} ~ \mathsf{messages} ~ \mathsf{in} ~ \mathsf{IOTA}$
- DHT for mapping $o \in O$ to a keyword set $K_o \subseteq W$ (*W* is the keyword space)
- By using a **uniform hash function**
 - $h: W \to \{0, 1, \ldots, r-1\}$

K can be represented by a string of bits $u \rightarrow 101001$

- $\cdot ~ \mathbf{O} \leftarrow \mathsf{set} ~ \mathsf{of} ~ \mathsf{all} ~ \mathsf{MAM} ~ \mathsf{messages} ~ \mathsf{in} ~ \mathsf{IOTA}$
- DHT for mapping $o \in O$ to a keyword set $K_o \subseteq W$ (*W* is the keyword space)
- By using a **uniform hash function**
 - $h: W \to \{0, 1, \ldots, r-1\}$

K can be represented by a string of bits $u \rightarrow 101001$

• in **u** the 1s are set in the positions given by $one(u) = \{h(k) \mid k \in K\}$

- $\cdot ~ \mathbf{O} \leftarrow \mathsf{set} ~ \mathsf{of} ~ \mathsf{all} ~ \mathsf{MAM} ~ \mathsf{messages} ~ \mathsf{in} ~ \mathsf{IOTA}$
- DHT for mapping $o \in O$ to a keyword set $K_o \subseteq W$ (*W* is the keyword space)
- By using a **uniform hash function**
 - $h: W \to \{0, 1, \ldots, r-1\}$

K can be represented by a string of bits $u \rightarrow 101001$

- in **u** the 1s are set in the positions given by $one(u) = \{h(k) \mid k \in K\}$
- E.g.: o = MAM msg indexed by QEZ...OBX root, K = {temperature, celsius} h(temperature) = 3, h(celsius) = 5
 K is represented by u = 000101 ⇒ DHT stores (000101,QEZ...OBX)

• We use these *r*-bit strings to identify logical nodes in a **DHT network**

- We use these *r*-bit strings to identify logical nodes in a **DHT network**
- network topology \rightarrow $H_r(V, E)$ *r*-dimensional hypercube

- We use these *r*-bit strings to identify logical nodes in a **DHT network**
- network topology $\rightarrow H_r(V, E)$ r-dimensional hypercube
- V set of vertices that represent logical nodes

- We use these *r*-bit strings to identify logical nodes in a **DHT network**
- network topology $\rightarrow H_r(V, E)$ r-dimensional hypercube
- V set of vertices that represent logical nodes
- **E** set of edges formed when two vertices differ of only one bit (they are also network **neighbors**), e.g. 1011 and 1010.

- We use these *r*-bit strings to identify logical nodes in a **DHT network**
- network topology $\rightarrow H_r(V, E)$ *r*-dimensional hypercube
- V set of vertices that represent logical nodes
- **E** set of edges formed when two vertices differ of only one bit (they are also network **neighbors**), e.g. 1011 and 1010.
- \cdot to find out how far apart two vertices *u* and *v* are
 - \rightarrow HammingDistance $(u, v) = \sum_{i=0}^{r-1} (u_i \oplus v_i),$

 \oplus is the XOR operation and u_i is the bit at the *i*-th position.

Multiple Keywords Search

• Pin Search - $\{o \in O \mid K_o = K\}$

gets all and only the objects associated with a keyword set *K* e.g. *pinSearch({temperature, celsius})* = (000**1**01,QEZ...OBX), (000101,IHU...9HZ), ...

Multiple Keywords Search

• Pin Search - $\{o \in O \mid K_o = K\}$

gets all and only the objects associated with a keyword set *K* e.g. *pinSearch({temperature, celsius})* = (000**1**0**1**,*QEZ...OBX*), (000**1**0**1**,*IHU...9HZ*), ...

• Superset Search - $\{o \in O \mid K_o \supseteq K\}$ also gets objects that can be described by keywords sets that include K e.g. superSetSearch({temperature, celsius}) = (000101,QEZ...OBX), (000111,XTL...A9Z), ...

Performance Evaluation

• Simulated DHT network (using PeerSim)

- Simulated DHT network (using PeerSim)
- Nodes number \rightarrow from 128 (r = 7) up to 8192 (r = 13)

- Simulated DHT network (using PeerSim)
- Nodes number \rightarrow from 128 (r = 7) up to 8192 (r = 13)
- Randomly created keywords-objects (i.e. MAM message roots) \rightarrow objects number 100, 1000 and 10000

- Simulated DHT network (using PeerSim)
- Nodes number \rightarrow from 128 (r = 7) up to 8192 (r = 13)
- Randomly created keywords-objects (i.e. MAM message roots) \rightarrow objects number 100, 1000 and 10000
- We evaluated the **number of hops** required for each new query

- Simulated DHT network (using PeerSim)
- Nodes number \rightarrow from 128 (r = 7) up to 8192 (r = 13)
- Randomly created keywords-objects (i.e. MAM message roots) \rightarrow objects number 100, 1000 and 10000
- We evaluated the **number of hops** required for each new query
- + For each type of test ightarrow 50 repetitions

Pin Search Results

• Average number of hops increases

Pin Search Results

- Average number of hops increases
- from about 3.5 for 128 nodes (r = 7)

Pin Search Results

- Average number of hops increases
- from about 3.5 for 128 nodes (r = 7)
- to about 6.72 for 8192 nodes (r = 13)

Pin Search Results

- Average number of hops increases
- from about 3.5 for 128 nodes (r = 7)
- to about 6.72 for 8192 nodes (r = 13)
- order of the logarithm of the hypercube logical nodes number $\rightarrow \frac{\log(n)}{2} = \frac{r}{2}$

Superset Search Results

 apparently anomalous values stand out

Superset Search Results

- apparently anomalous values stand out
- Superset traverse the network until it finds the number of objects indicated by the limit, i.e. *l* = 10

Superset Search Results

- apparently anomalous values stand out
- Superset traverse the network until it finds the number of objects indicated by the limit, i.e. l = 10
- with many nodes and few objects → the query might take longer to reach that limit, because many nodes are "empty"

Superset Search Results

- apparently anomalous values stand out
- Superset traverse the network until it finds the number of objects indicated by the limit, i.e. l = 10
- with many nodes and few objects → the query might take longer to reach that limit, because many nodes are "empty"
- order of $\frac{\log(n)}{2} + l$, where *l* can be set as limit of the nodes number

• Decentralized data markets \rightarrow showing a DLT layer two solution \rightarrow facilitating the retrieval of large amounts of data using keywords.

- Decentralized data markets \rightarrow showing a DLT layer two solution \rightarrow facilitating the retrieval of large amounts of data using keywords.
- IOTA MAM channels (however, can be easily extended to other DLTs and DFSs).

- Decentralized data markets \rightarrow showing a DLT layer two solution \rightarrow facilitating the retrieval of large amounts of data using keywords.
- IOTA MAM channels (however, can be easily extended to other DLTs and DFSs).
- The DHT network structured as a hypercube \rightarrow efficient routing mechanism based on keyword sets.

- Decentralized data markets \rightarrow showing a DLT layer two solution \rightarrow facilitating the retrieval of large amounts of data using keywords.
- IOTA MAM channels (however, can be easily extended to other DLTs and DFSs).
- The DHT network structured as a hypercube \rightarrow efficient routing mechanism based on keyword sets.
- Efficient trade-off between memory space and response time