
Mirko Zichichi1,2, Luca Serena2, Stefano
Ferretti3, Gabriele D’Angelo2

1Universidad Politécnica de Madrid
2University of Bologna
3University of Urbino ”Carlo Bo”

Incentivized Data Mules Based
on State-Channels



InDaMul



InDaMul Introduction Protocol Conclusions

General Problem→ Possible Solution

People decides to move towards countrysides and rural areas -> it is not possible to
implement (costly) smart city services.
Smart territories:

• no support by a wide area network connectivity
• or solutions might result too costly (e.g. satellite connections)
• Needed:

• novel opportunistic solutions -> share and reuse data, services, computation.
• Data Mules (Mobile Ubiquitous LAN Extensions) ->
even in the absence of Internet are able to collect data from sensors and to exploit
their own mobility to carry the information to destination

1 / 10



InDaMul Introduction Protocol Conclusions

General Problem→ Possible Solution

People decides to move towards countrysides and rural areas -> it is not possible to
implement (costly) smart city services.
Smart territories:

• no support by a wide area network connectivity

• or solutions might result too costly (e.g. satellite connections)
• Needed:

• novel opportunistic solutions -> share and reuse data, services, computation.
• Data Mules (Mobile Ubiquitous LAN Extensions) ->
even in the absence of Internet are able to collect data from sensors and to exploit
their own mobility to carry the information to destination

1 / 10



InDaMul Introduction Protocol Conclusions

General Problem→ Possible Solution

People decides to move towards countrysides and rural areas -> it is not possible to
implement (costly) smart city services.
Smart territories:

• no support by a wide area network connectivity
• or solutions might result too costly (e.g. satellite connections)

• Needed:

• novel opportunistic solutions -> share and reuse data, services, computation.
• Data Mules (Mobile Ubiquitous LAN Extensions) ->
even in the absence of Internet are able to collect data from sensors and to exploit
their own mobility to carry the information to destination

1 / 10



InDaMul Introduction Protocol Conclusions

General Problem→ Possible Solution

People decides to move towards countrysides and rural areas -> it is not possible to
implement (costly) smart city services.
Smart territories:

• no support by a wide area network connectivity
• or solutions might result too costly (e.g. satellite connections)
• Needed:

• novel opportunistic solutions -> share and reuse data, services, computation.
• Data Mules (Mobile Ubiquitous LAN Extensions) ->
even in the absence of Internet are able to collect data from sensors and to exploit
their own mobility to carry the information to destination

1 / 10



InDaMul Introduction Protocol Conclusions

General Problem→ Possible Solution

People decides to move towards countrysides and rural areas -> it is not possible to
implement (costly) smart city services.
Smart territories:

• no support by a wide area network connectivity
• or solutions might result too costly (e.g. satellite connections)
• Needed:

• novel opportunistic solutions -> share and reuse data, services, computation.

• Data Mules (Mobile Ubiquitous LAN Extensions) ->
even in the absence of Internet are able to collect data from sensors and to exploit
their own mobility to carry the information to destination

1 / 10



InDaMul Introduction Protocol Conclusions

General Problem→ Possible Solution

People decides to move towards countrysides and rural areas -> it is not possible to
implement (costly) smart city services.
Smart territories:

• no support by a wide area network connectivity
• or solutions might result too costly (e.g. satellite connections)
• Needed:

• novel opportunistic solutions -> share and reuse data, services, computation.
• Data Mules (Mobile Ubiquitous LAN Extensions) ->
even in the absence of Internet are able to collect data from sensors and to exploit
their own mobility to carry the information to destination

1 / 10



InDaMul Introduction Protocol Conclusions

Specific Problem

InDaMul: a dapp incentivizing participants in Data Mule-based communications, by
combining Distributed Ledger Technologies (DLTs) and Decentralized File Storages (DFS):

• increasingly used to create common, decentralized and trustless infrastructure
• smart contracts -> ability to automate and enforce processes
• A state channels are opened between participants ->
ERC20 tokens deposit in a smart contract.

• State channel networks -> participants pay by using other participants as relays.

2 / 10



InDaMul Introduction Protocol Conclusions

Specific Problem

InDaMul: a dapp incentivizing participants in Data Mule-based communications, by
combining Distributed Ledger Technologies (DLTs) and Decentralized File Storages (DFS):

• increasingly used to create common, decentralized and trustless infrastructure

• smart contracts -> ability to automate and enforce processes
• A state channels are opened between participants ->
ERC20 tokens deposit in a smart contract.

• State channel networks -> participants pay by using other participants as relays.

2 / 10



InDaMul Introduction Protocol Conclusions

Specific Problem

InDaMul: a dapp incentivizing participants in Data Mule-based communications, by
combining Distributed Ledger Technologies (DLTs) and Decentralized File Storages (DFS):

• increasingly used to create common, decentralized and trustless infrastructure
• smart contracts -> ability to automate and enforce processes

• A state channels are opened between participants ->
ERC20 tokens deposit in a smart contract.

• State channel networks -> participants pay by using other participants as relays.

2 / 10



InDaMul Introduction Protocol Conclusions

Specific Problem

InDaMul: a dapp incentivizing participants in Data Mule-based communications, by
combining Distributed Ledger Technologies (DLTs) and Decentralized File Storages (DFS):

• increasingly used to create common, decentralized and trustless infrastructure
• smart contracts -> ability to automate and enforce processes
• A state channels are opened between participants ->
ERC20 tokens deposit in a smart contract.

• State channel networks -> participants pay by using other participants as relays.

2 / 10



InDaMul Introduction Protocol Conclusions

Specific Problem

InDaMul: a dapp incentivizing participants in Data Mule-based communications, by
combining Distributed Ledger Technologies (DLTs) and Decentralized File Storages (DFS):

• increasingly used to create common, decentralized and trustless infrastructure
• smart contracts -> ability to automate and enforce processes
• A state channels are opened between participants ->
ERC20 tokens deposit in a smart contract.

• State channel networks -> participants pay by using other participants as relays.

2 / 10



InDaMul Introduction Protocol Conclusions

InDaMul

• Client (C) is offline and wants to send a message to a Server (S) that is online
• A Data Mule (M) retrieves (offline) C’s payload and brings it to a Proxy (P).
• P in turn forwards (online) the message to S.
• Then, a message can be returned from S to C in the opposite way.

3 / 10



InDaMul Introduction Protocol Conclusions

InDaMul

• Client (C) is offline and wants to send a message to a Server (S) that is online

• A Data Mule (M) retrieves (offline) C’s payload and brings it to a Proxy (P).
• P in turn forwards (online) the message to S.
• Then, a message can be returned from S to C in the opposite way.

3 / 10



InDaMul Introduction Protocol Conclusions

InDaMul

• Client (C) is offline and wants to send a message to a Server (S) that is online
• A Data Mule (M) retrieves (offline) C’s payload and brings it to a Proxy (P).

• P in turn forwards (online) the message to S.
• Then, a message can be returned from S to C in the opposite way.

3 / 10



InDaMul Introduction Protocol Conclusions

InDaMul

• Client (C) is offline and wants to send a message to a Server (S) that is online
• A Data Mule (M) retrieves (offline) C’s payload and brings it to a Proxy (P).
• P in turn forwards (online) the message to S.

• Then, a message can be returned from S to C in the opposite way.

3 / 10



InDaMul Introduction Protocol Conclusions

InDaMul

• Client (C) is offline and wants to send a message to a Server (S) that is online
• A Data Mule (M) retrieves (offline) C’s payload and brings it to a Proxy (P).
• P in turn forwards (online) the message to S.
• Then, a message can be returned from S to C in the opposite way.

3 / 10



InDaMul Introduction Protocol Conclusions

Client to Mule

• C waits a Mule to pick up its payload pC encrypted with a key x.

• A Mule M1 passing nearby accepts to carry the message.
• C transmits to M1 the payload pC and also:

• a balanceM1 object used to update the state channel between C and M1.
• tenderC containing: an immutable URIp of pC; offer to a P; idx of the encryption key.

4 / 10



InDaMul Introduction Protocol Conclusions

Client to Mule

• C waits a Mule to pick up its payload pC encrypted with a key x.
• A Mule M1 passing nearby accepts to carry the message.

• C transmits to M1 the payload pC and also:

• a balanceM1 object used to update the state channel between C and M1.
• tenderC containing: an immutable URIp of pC; offer to a P; idx of the encryption key.

4 / 10



InDaMul Introduction Protocol Conclusions

Client to Mule

• C waits a Mule to pick up its payload pC encrypted with a key x.
• A Mule M1 passing nearby accepts to carry the message.
• C transmits to M1 the payload pC and also:

• a balanceM1 object used to update the state channel between C and M1.
• tenderC containing: an immutable URIp of pC; offer to a P; idx of the encryption key.

4 / 10



InDaMul Introduction Protocol Conclusions

Client to Mule

• C waits a Mule to pick up its payload pC encrypted with a key x.
• A Mule M1 passing nearby accepts to carry the message.
• C transmits to M1 the payload pC and also:

• a balanceM1 object used to update the state channel between C and M1.

• tenderC containing: an immutable URIp of pC; offer to a P; idx of the encryption key.

4 / 10



InDaMul Introduction Protocol Conclusions

Client to Mule

• C waits a Mule to pick up its payload pC encrypted with a key x.
• A Mule M1 passing nearby accepts to carry the message.
• C transmits to M1 the payload pC and also:

• a balanceM1 object used to update the state channel between C and M1.
• tenderC containing: an immutable URIp of pC; offer to a P; idx of the encryption key.

4 / 10



InDaMul Introduction Protocol Conclusions

Mule to Proxy [1/3]

• When M1 becomes online it publishes the tender in an Announcement Service, in
order to reach an audience of different Proxies.

• While announcing the tender, M1 also uploads pC to a DFS.
• A Proxy P, which decides to take charge of pC, downloads payload and tender.

5 / 10



InDaMul Introduction Protocol Conclusions

Mule to Proxy [1/3]

• When M1 becomes online it publishes the tender in an Announcement Service, in
order to reach an audience of different Proxies.

• While announcing the tender, M1 also uploads pC to a DFS.

• A Proxy P, which decides to take charge of pC, downloads payload and tender.

5 / 10



InDaMul Introduction Protocol Conclusions

Mule to Proxy [1/3]

• When M1 becomes online it publishes the tender in an Announcement Service, in
order to reach an audience of different Proxies.

• While announcing the tender, M1 also uploads pC to a DFS.
• A Proxy P, which decides to take charge of pC, downloads payload and tender.

5 / 10



InDaMul Introduction Protocol Conclusions

Mule to Proxy [2/3]

• A Smart Contract named InDaMul executes the majority of the protocol tasks.

• P simply invokes a method in InDaMul using the tender object as input.
• submitTender method automatically checks the validity of the signatures found in
the data provided by M1, i.e. the tender, and then binds P’s address with idx.

• This makes P eligible to get access to the key identified by idx.

6 / 10



InDaMul Introduction Protocol Conclusions

Mule to Proxy [2/3]

• A Smart Contract named InDaMul executes the majority of the protocol tasks.
• P simply invokes a method in InDaMul using the tender object as input.

• submitTender method automatically checks the validity of the signatures found in
the data provided by M1, i.e. the tender, and then binds P’s address with idx.

• This makes P eligible to get access to the key identified by idx.

6 / 10



InDaMul Introduction Protocol Conclusions

Mule to Proxy [2/3]

• A Smart Contract named InDaMul executes the majority of the protocol tasks.
• P simply invokes a method in InDaMul using the tender object as input.
• submitTender method automatically checks the validity of the signatures found in
the data provided by M1, i.e. the tender, and then binds P’s address with idx.

• This makes P eligible to get access to the key identified by idx.

6 / 10



InDaMul Introduction Protocol Conclusions

Mule to Proxy [2/3]

• A Smart Contract named InDaMul executes the majority of the protocol tasks.
• P simply invokes a method in InDaMul using the tender object as input.
• submitTender method automatically checks the validity of the signatures found in
the data provided by M1, i.e. the tender, and then binds P’s address with idx.

• This makes P eligible to get access to the key identified by idx. 6 / 10



InDaMul Introduction Protocol Conclusions

Mule to Proxy [3/3]

• P sends request to the decentralized Authorization Service for accessing the key x

• This consists of a subset of DLT nodes maintaining shares of the key x using the
Secret Sharing cryptographic technique.

• Each authorization node releases a share of x to P after checking the ledger

7 / 10



InDaMul Introduction Protocol Conclusions

Mule to Proxy [3/3]

• P sends request to the decentralized Authorization Service for accessing the key x
• This consists of a subset of DLT nodes maintaining shares of the key x using the
Secret Sharing cryptographic technique.

• Each authorization node releases a share of x to P after checking the ledger

7 / 10



InDaMul Introduction Protocol Conclusions

Mule to Proxy [3/3]

• P sends request to the decentralized Authorization Service for accessing the key x
• This consists of a subset of DLT nodes maintaining shares of the key x using the
Secret Sharing cryptographic technique.

• Each authorization node releases a share of x to P after checking the ledger
7 / 10



InDaMul Introduction Protocol Conclusions

Proxy to Server

• P aggregates shares to decrypt the payload pC and send it to S.

• submitTender automatically locked an amount of tokens in favor of P until a
response reaches C through another Mule M2.

• balance objects are locked in the InDaMul smart contract for M1 and M2 until some
conditions are verified by the data given in input.

8 / 10



InDaMul Introduction Protocol Conclusions

Proxy to Server

• P aggregates shares to decrypt the payload pC and send it to S.
• submitTender automatically locked an amount of tokens in favor of P until a
response reaches C through another Mule M2.

• balance objects are locked in the InDaMul smart contract for M1 and M2 until some
conditions are verified by the data given in input.

8 / 10



InDaMul Introduction Protocol Conclusions

Proxy to Server

• P aggregates shares to decrypt the payload pC and send it to S.
• submitTender automatically locked an amount of tokens in favor of P until a
response reaches C through another Mule M2.

• balance objects are locked in the InDaMul smart contract for M1 and M2 until some
conditions are verified by the data given in input. 8 / 10



InDaMul Introduction Protocol Conclusions

“The Island”

• When C is not in the action range of any Mule, a network can be set up between C’s
physical Neighbors (N) -> the “Island”.

• One or more Target Neighbors (TN), must be reached by a Mule and act as relays.
• Clients that cannot interact directly with a TN have to find a path within the Island.
• To incentivize Neighbors to relay messages a State Channel Network is used

9 / 10



InDaMul Introduction Protocol Conclusions

“The Island”

• When C is not in the action range of any Mule, a network can be set up between C’s
physical Neighbors (N) -> the “Island”.

• One or more Target Neighbors (TN), must be reached by a Mule and act as relays.

• Clients that cannot interact directly with a TN have to find a path within the Island.
• To incentivize Neighbors to relay messages a State Channel Network is used

9 / 10



InDaMul Introduction Protocol Conclusions

“The Island”

• When C is not in the action range of any Mule, a network can be set up between C’s
physical Neighbors (N) -> the “Island”.

• One or more Target Neighbors (TN), must be reached by a Mule and act as relays.
• Clients that cannot interact directly with a TN have to find a path within the Island.

• To incentivize Neighbors to relay messages a State Channel Network is used

9 / 10



InDaMul Introduction Protocol Conclusions

“The Island”

• When C is not in the action range of any Mule, a network can be set up between C’s
physical Neighbors (N) -> the “Island”.

• One or more Target Neighbors (TN), must be reached by a Mule and act as relays.
• Clients that cannot interact directly with a TN have to find a path within the Island.
• To incentivize Neighbors to relay messages a State Channel Network is used 9 / 10



InDaMul Introduction Protocol Conclusions

Conclusions and Future Work

• Implementations in Ethereum ->
submitTender method in the InDaMul contract -> high gas usage, i.e. ∼ 246k.

• -> Sidechain (e.g. Polygon)
• Future work -> focus on the Mules mobility since other delays, by comparison, are
negligible.

• Smart-village-like scenario where buses and couriers act as Data Mule.
• Simulations performed with the LUNES agent-based simulator.

10 / 10



InDaMul Introduction Protocol Conclusions

Conclusions and Future Work

• Implementations in Ethereum ->
submitTender method in the InDaMul contract -> high gas usage, i.e. ∼ 246k.

• -> Sidechain (e.g. Polygon)

• Future work -> focus on the Mules mobility since other delays, by comparison, are
negligible.

• Smart-village-like scenario where buses and couriers act as Data Mule.
• Simulations performed with the LUNES agent-based simulator.

10 / 10



InDaMul Introduction Protocol Conclusions

Conclusions and Future Work

• Implementations in Ethereum ->
submitTender method in the InDaMul contract -> high gas usage, i.e. ∼ 246k.

• -> Sidechain (e.g. Polygon)
• Future work -> focus on the Mules mobility since other delays, by comparison, are
negligible.

• Smart-village-like scenario where buses and couriers act as Data Mule.
• Simulations performed with the LUNES agent-based simulator.

10 / 10



InDaMul Introduction Protocol Conclusions

Conclusions and Future Work

• Implementations in Ethereum ->
submitTender method in the InDaMul contract -> high gas usage, i.e. ∼ 246k.

• -> Sidechain (e.g. Polygon)
• Future work -> focus on the Mules mobility since other delays, by comparison, are
negligible.

• Smart-village-like scenario where buses and couriers act as Data Mule.

• Simulations performed with the LUNES agent-based simulator.

10 / 10



InDaMul Introduction Protocol Conclusions

Conclusions and Future Work

• Implementations in Ethereum ->
submitTender method in the InDaMul contract -> high gas usage, i.e. ∼ 246k.

• -> Sidechain (e.g. Polygon)
• Future work -> focus on the Mules mobility since other delays, by comparison, are
negligible.

• Smart-village-like scenario where buses and couriers act as Data Mule.
• Simulations performed with the LUNES agent-based simulator.

10 / 10


	InDaMul
	Introduction
	Protocol
	Conclusions


