
 Move
 the Language for Secure Next Gen

Smart Contracts
6th Scientific School on Blockchain & DLTs

Mirko Zichichi
mirko.zichichi@iota.org

 Move

Resource

 Move

FlexibilityResource

 Move

SecurityFlexibilityResource

AssetResource

 → Diem → Libra

https://www.theverge.com/2019/6/26/18716326/facebook-libra-cryptocurrency-blockchain-irs-starbucks

https://www.theverge.com/2019/6/26/18716326/facebook-libra-cryptocurrency-blockchain-irs-starbucks

Blackshear, Sam, et al. "Move: A Language With Programmable Resources"
https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf (2020).

"The scarcest resource in the world is not time or money, but man's brain power.

When these are used to develop software, if you can amplify brain capacity, i.e. do
more per unit of time, this is one of the most impactful things you can achieve."

https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf

 Move

- Tangible programming experience

- Linked to the physical intuitions of
- Exchange → movement, transfer
- Ownership → access control, possession

 → Resource-oriented programming

Criticism to existing blockchain languages

Criticism to existing blockchain languages
→ Ethereum Virtual Machine/Solidity

The Rise of Alternative Virtual Machines (AltVMs)

Criticism to existing blockchain languages

1. Indirect asset representation

 Encoding assets using an integer number

 → but an integer is not equivalent to an asset.

Criticism to existing blockchain languages

2. Scarcity control of an asset is not built into the language

Criticism to existing blockchain languages

3. Access control not flexible

Criticism to existing blockchain languages

1. Indirect asset representation

2. Scarcity control of an asset is not built into the language

3. Access control not flexible

 →

 Move

 Representation of state transitions enabling ownership of digital

resources to be encoded in an open source system

First-class
Resources

 Move

 It provides the possibility of defining customized resource types with a

semantics inspired by linear logic:

First-class
Resources

 Move

 It provides the possibility of defining customized resource types with a

semantics inspired by linear logic:

- a resource can never be implicitly copied or discarded

First-class
Resources

 Move

 It provides the possibility of defining customized resource types with a

semantics inspired by linear logic:

- a resource can never be implicitly copied or discarded

First-class
Resources

 Move

 It provides the possibility of defining customized resource types with a

semantics inspired by linear logic:

- a resource can never be implicitly copied or discarded

- only moved between the memory locations of the programme.

First-class
Resources

Software that behaves in line with
your physical intuition.

 Move

First-class
Resources

 Move

First-class
Resources

Software that behaves in line with
your physical intuition.

 Move

First-class
Resources

Software that behaves in line with
your physical intuition.

 Move

 Move programmers can protect access to critical operations on resources

through the

- Modules: contain resource types and procedures that encode rules for
resources.

First-class
Resources

 Move

First-class
Resources

Solidity

Blackshear, Sam, et al. "Resources: A safe language abstraction for money." arXiv preprint https://arxiv.org/abs/2004.05106 (2020).

Address Ether
Balance

Data

0x2 3.4

Move

https://arxiv.org/abs/2004.05106

AssetResource

VersatilitàFlexibility

● Blockchain agnostic: we define how accounts and transactions work

● Core VM is easily extensible with:

○ Cryptography, signature schemes, ZKP verifiers

○ Blockchain specific features (mana generation, system transactions,

account concept, etc.)

● Built-in gas metering and safe math: no undefined behavior is possible

Move Virtual Machine

28

Node Software

Blockchain Adapter

MoveVM
Interpreter
+ GasLogic

Address
format

Transaction
format

Gas metering custom logic

Consensus Storage

Cryptography, new features, ZK,...

Move Modularity

● Unified Memory - Account Based Ledger: EVM, WASM, ISC, Aptos, Core Move

○ Only sequential* execution

○ Convenient as you can access any memory location without prior request

● Partitioned Memory - Object Based Ledger: Sui Move, Cardano, Radix, Stardust, etc.

○ Parallel execution is possible, as each SC names which objects it will touch

○ Heavy usage of a particular SC doesn’t degrade others

○ Execution needs only a fraction of the memory

○ UTXO is a special case of the object ledger

Move on Account vs Object Ledger

30

Move History

31

Early Move
Libra/Diem
2018-2021

Move Adapters
Sui & Aptos
2022-2023

Move 2024
Sui & Aptos Forks

Sui
Adapter

Aptos
Adapter

Move
Language

Sui Move
Language

Aptos Move
Language

VersatilitàFlexibility

SicurezzaSecurity

 Move

 - Inherits memory and type safety concepts from Rust

- The compiler catches errors that would not normally be detected in
other compilers (e.g. Solidity)

- Resource safety
- Simple types like integers and addresses → can be copied

- resources → can only be moved.

- use of linear logic prevents 'double spending' (moving a resource
twice).

Security

 Move

 - Access Control by default

- Forced by the language even though the programmer may forget
to implement it.

- Limited mutability

- Any mutation of a value in Move occurs via a 'reference' as in Rust.
- by-value → value
- mutable → &mut value
- read-only → &value

Security

Pass a value to a function by-value

Pass a value to a function by-value

Pass a value to a function by-value

“Borrow” a value with mutable ref (&mut)

“Borrow” a value with mutable ref (&mut)

“Borrow” a value with mutable ref (&mut)

“Borrow” a value with read-only ref (&)

Wow!
Che bella!

 Move

 Double check:

- the high-level programming language
- is compiled using a compiler that verifies security properties

- the untyped low-level programming language
- performs security checks at runtime

Security

 Move

 Move smart contracts can be easily Formally Verified

Security

 Move

 NO reentrancy.

Security

Solidity Move

Blackshear, Sam, et al. "Resources: A safe language abstraction for money." arXiv preprint https://arxiv.org/abs/2004.05106 (2020).

https://arxiv.org/abs/2004.05106

 Move

 NO reentrancy.

Main cause of reentrancy
→ dynamic dispatch:

 within a smart contract you have a function whose
 definition is not known in advance to the developer.

In Move each time a function is called, the code that is called is statically
known (static dispatch).

Security

SicurezzaSecurity

IOTA flavored Move

48

- Object-Centric Global Storage

- In (Diem) Move, transactions can freely access resources, move_to and move_from.

- In IOTA Move transaction inputs are explicitly specified using unique identifiers for

objects (as opposed to resources) and packages (sets of modules).

- Addresses Represent Object IDs

- IOTA repurposes the address type as a 32-byte identifier used for both objects

(object id) and accounts (address).

- Objects with Key Ability and Globally Unique IDs

- In (Diem) Move, the key ability indicates that a type is a resource, which, along with an

account address, can serve as a key in global storage.

- In IOTA Move, the key ability denotes an object type and requires the struct's first field

to be id: UID (which becomes the object id).

Key differences between
(Diem/Aptos) Move and IOTA/Sui Move (1/2)

49https://docs.iota.org/developer/iota-101/move-overview/

https://docs.iota.org/developer/iota-101/move-overview/

A structure in IOTA Move is a custom type that contains key-value pairs, where the key is the name

of a property, and the value is what's stored.

 Struct

0. Basics - Custom Types

50https://docs.iota.org/developer/iota-101/objects/object-model

https://docs.iota.org/developer/iota-101/objects/object-model

● Abilities are keywords in IOTA Move that define how types behave at the compiler level

○ copy: the value of this type can be copied

■ usually basic types: Coin is an asset type that should not be duplicated, so it

should not have copy ability

○ drop: the value of this type can be automatically destroyed at the end of the scope

■ for types without drop ability, not destroying them manually will cause a

compilation error.

○ key: a type that can appear as a key in global storage

○ store: the value of this type can be stored (for example, in another struct)

● Custom types that have the abilities key and store are considered to be assets in IOTA Move.

○ Assets are stored in global storage and can be transferred between accounts.

0. Basics - Abilities

51https://docs.iota.org/developer/getting-started/create-a-module

https://docs.iota.org/developer/getting-started/create-a-module

● The first field of the struct must be the id of the object with type UID

 Struct Object

1. Object Basics

52https://docs.iota.org/developer/iota-101/objects/object-model

https://docs.iota.org/developer/iota-101/objects/object-model

● In Move the key ability denotes a type that can appear as a key in global storage

● Diem Move uses a (type, address)-indexed map

● IOTA Move uses a map keyed by object IDs.

1. Object Basics - Key

53https://docs.iota.org/developer/iota-101/objects/object-model

https://docs.iota.org/developer/iota-101/objects/object-model

● The only way to create a new UID for a IOTA object is to call object::new.

1. Object Basics - Create an Object

54https://docs.iota.org/developer/iota-101/objects/object-model

https://docs.iota.org/developer/iota-101/objects/object-model

● The constructor puts the object value in a local variable.

● The object can then be placed in persistent global storage.

1. Object Basics - Store an Object

55https://docs.iota.org/developer/iota-101/objects/object-model

https://docs.iota.org/developer/iota-101/objects/object-model

Object

Module

1. Object → Ledger → Storage

56https://docs.iota.org/developer/iota-101/objects/object-model

Object

Data

Object

Coin
IOTA

Object

Module

Account

Data

Module

Account

Module

Coin
IOTA

Account-based (Aptos, Ethereum)Object-based (IOTA, Sui)

https://docs.iota.org/developer/iota-101/objects/object-model

● Objects in IOTA can have different types of ownership, with three categories:

○ Owned mutable object -> is owned by an address/object

○ Shared mutable object -> anyone can use it in a transaction

○ Immutable object -> an object that can't be mutated, transferred or deleted.

● In other blockchains, every object is shared

○ In IOTA Move programmers have the choice to implement a particular use-case using

shared objects, owned objects, or a combination.

● In IOTA, a transaction that touches a shared object needs to pass through the consensus

mechanism. Whilst, a transaction that touches only owned objects does not need it.

2. Owned, Shared and Immutable Objects

57https://docs.iota.org/developer/iota-101/objects/shared-owned

https://docs.iota.org/developer/iota-101/objects/shared-owned

2. Owned, Shared and Immutable Objects

58

● Address Owned object: exclusively accessible to their owner

○ The owner is a 32-byte user address or object ID

○ Does not require consensus to be modified

https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

https://docs.iota.org/developer/iota-101/objects/object-ownership/shared

2. Owned, Shared and Immutable Objects

59

● Shared object: anyone can read or write this object.

○ mutable owned objects are single-writer

○ shared objects require to sequence reads and writes

https://docs.iota.org/developer/iota-101/objects/object-ownership/shared

https://docs.iota.org/developer/iota-101/objects/object-ownership/shared

● Immutable objects have no owner, so anyone can use them without the need for ordering

○ packages are immutable objects

○ you can freeze an initially mutable object

2. Owned, Shared and Immutable Objects

60https://docs.iota.org/developer/iota-101/objects/object-ownership/immutable

https://docs.iota.org/developer/iota-101/objects/object-ownership/immutable

● IOTA Move authentication mechanisms ensure only you can use objects owned by you or

shared in function calls.

● The object can be passed as a parameter to a function in two ways (core Move):

○ Pass by reference

■ &ColorObject

■ &mut ColorObject

○ Pass by value

■ ColorObject

3. Using Objects

61https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

● Read-only references (&) allow you to read data from the object

● Mutable references (&mut) allow you to mutate the data in the object.

3. Using Objects - Pass by Reference

62https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

● Pass objects by value into an entry function means the object is moved out of storage.

● Objects cannot be arbitrarily dropped and must be either consumed (e.g., transferred) or

deleted

3. Using Objects - Pass by Value

63https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

● In IOTA Move, you can organize data structs by putting a field of struct type in another

● To embed a struct type in an object struct (with a key ability), the struct type must have the

store ability.

4. Object Wrapping

64https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

● When an object is wrapped into another object:

○ it no longer exists independently on the ledger; it becomes part of the data of the

object that wraps it;

○ is no longer findable by its objectID;

○ is no longer passable as an argument in transactions procedures calls; the only

access point is through the wrapping object (you need to pass this as argument).

● Unwrapping

○ you can then take out the wrapped object and transfer it to an address;

○ when an object is unwrapped, it becomes an independent object again;

○ wrapped objects cannot be unwrapped unless the wrapping object is destroyed

4. Object Wrapping

65https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

4. Object Wrapping

66https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

● IOTA Move provides dynamic fields with arbitrary names, added and removed on-the-fly

(not fixed at publish), which can store heterogeneous values.

● This approach overcomes the following limitations:

○ Object's have a finite set of fields, fixed when its module is declared.

○ Objects can become very large if they wrap several other objects (high gas fees).

○ It is not possible to store a collection of objects (e.g., vector) of heterogeneous types.

5. Dynamic Fields

67https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

● This function takes the Child object by value and makes it a dynamic field of the Parent

object with name b"child";

○ sender address owns the Parent object;

○ the Parent object owns the Child object, and can refer to it by the name b"child".

5. Dynamic Fields - Add field

68https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

5. Dynamic Fields - Access field

69https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

5. Dynamic Fields - Remove field

70https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

6. Transfer to Object

71https://docs.iota.org/developer/iota-101/objects/transfers/transfer-to-object

● Transfer objects to an object ID works in the same way as an object transfer to an address

(using the same functions)

● Transfering an object to another object means establishing a form of parent-child

authentication relationship.

○ Objects transferred to another object can be received by the owner of the parent object.

○ The parent (receiving) object module defines the access control for receiving a child obj.

https://docs.iota.org/developer/iota-101/objects/transfers/transfer-to-object

6. Transfer to Object - Receive

72https://docs.iota.org/developer/iota-101/objects/transfers/transfer-to-object

● After an object c has been sent to another object p, p must then receive c to do anything with it.

● The module of the type of p defines access control policies and other restrictions on c

https://docs.iota.org/developer/iota-101/objects/transfers/transfer-to-object

7. Programmable Transaction Blocks

73https://x.com/zktx_io/status/1883158121100816745

https://x.com/zktx_io/status/1883158121100816745

● The inputs value of a PTB is value is a vector of arguments, either objects or pure values

● The commands value of a PTB is a vector of commands using inputs or results to execute code

○ TransferObjects sends (one or more) objects to a specified address

○ SplitCoins splits off (one or more) coins from a single coin. It can be any iota::coin::Coin<_>

○ MergeCoins merges (one or more) coins into a single coin

○ MakeMoveVec creates a vector of Move values

○ MoveCall invokes either an entry or a public Move function in a published package.

○ Publish creates a new package and calls the init function of each module in the package.

○ Upgrade upgrades an existing package.

● The result values is a vector of values that can be produced by each command; the type of the

value can be any arbitrary Move type, not limited to objects or pure values.

● A PTB can perform up to 1,024 unique operations in a single execution.

7. Programmable Transaction Blocks

74https://docs.iota.org/developer/iota-101/transactions/ptb/prog-txn-blocks

https://docs.iota.org/developer/iota-101/transactions/ptb/prog-txn-blocks

● The public modifier allows a function to be called from a PTB and also from other modules

○ NO restrictions on parameters

● The entry modifier allows a function to be called directly from a PTB as a module "entrypoint".

○ entry functions parameters must be inputs to the PTB (not results of previous command)

○ only allowed to return types that have drop

● Use the entry modifier when:

○ You want strong guarantees that your function is not being combined with third-party

module functions (e.g., swap protocol that does not want a flash loan)

○ public function signatures must be maintained by upgrades (entry function not).

○ It is also possible to create a public entry function, can be called by other modules

7. Programmable Transaction Blocks
public vs entry functions

75https://docs.iota.org/developer/iota-101/move-overview/entry-functions

https://docs.iota.org/developer/iota-101/move-overview/entry-functions

8. Hot Potato Pattern

76https://docs.iota.org/developer/iota-101/move-overview/patterns/hot-potato

1. This pattern requires that function B must be called immediately after function A, when

function A returns a hot potato and function B consumes it.

2. Flash loan:

a. create a `Receipt` struct that

■ cannot be discarded because it does not have `drop`,

■ cannot be put in persistent storage because it does not have `key`,

■ cannot be transferred or wrapped because it does not have `store`.

b. Have a `loan` function that requests a loan of `amount` from `lender` and returns the

`Receipt`

c. the only way to get rid of it is to call `repay` at some point forcing to pay back the debt.

https://docs.iota.org/developer/iota-101/move-overview/patterns/hot-potato

9. One-Time Witness (OTW)

77https://docs.iota.org/developer/iota-101/move-overview/one-time-witness

● Special type guaranteed to have at most one instance: useful for limiting certain actions to only

happen once (e.g., creating a coin). The only instance is passed to its module's init function when

its package is published. In Move, a type is considered a OTW if:

○ Its name is the same as its module's names, all uppercased.

○ It has ONLY the drop ability

○ It has no fields, or a single bool field.

https://docs.iota.org/developer/iota-101/move-overview/one-time-witness

10. Generics

78https://intro.sui-book.com/unit-three/lessons/2_intro_to_generics.html#intro-to-generics

● Generics are abstract stand-ins for concrete types or other properties.

● Conditions to enforce that the type passed into the generic must have certain abilities.

● Using generics in functions

https://intro.sui-book.com/unit-three/lessons/2_intro_to_generics.html#intro-to-generics

11. Capability Pattern

79https://docs.iota.org/developer/iota-101/move-overview/patterns/capabilities

● This pattern enables the authorization of specific actions with an object.

○ e.g., the UpgradeCap is used to authorize the upgrading of packages.

○ e.g. the TreasuryCap grants the authority to manage a Coin treasury functions.

https://docs.iota.org/developer/iota-101/move-overview/patterns/capabilities

Interacting with a
IOTA Move Module

80

Install IOTA

81

https://docs.iota.org/developer/getting-started/install-iota

Explorer:
https://explorer.iota.org/?network=testnet

https://docs.iota.org/developer/getting-started/install-iota
https://explorer.iota.org/?network=testnet

Move Capture the Flag

82

https://docs.iota.org/developer/iota-move-ctf/introduction

Provide transaction hash digests where you got each flag for challenges 1 to 7
by the end of the month

Bonus for the ones that get the flag for challenge 8

https://docs.iota.org/developer/iota-move-ctf/introduction

Receive funds

83

$ iota client faucet
$ iota client gas

0. Write a
IOTA Move Package

84https://docs.iota.org/developer/getting-started/create-a-module

https://docs.iota.org/developer/getting-started/create-a-module

1. Build and Publish a IOTA Move Package

85https://docs.iota.org/developer/getting-started/build-test
https://docs.iota.org/developer/getting-started/publish

$ iota move build
$ iota move test
$
$
$ iota client publish --gas-budget 5000000

https://docs.iota.org/developer/getting-started/build-test
https://docs.iota.org/developer/getting-started/publish

● You can construct more advanced blocks of transactions using the

 command.

● In general, transactions on IOTA are composed of:

○ a number of commands

○ that execute on inputs

○ to define some results

2. Interact with a Package - PTB

86https://docs.iota.org/references/cli/ptb

$ iota client ptb

https://docs.iota.org/references/cli/ptb

3. Programmable Transaction Blocks

87

$ iota client ptb \
--move-call 0xd95b4510206e13fbe9413bc61183ac3b8375c8971adc54c81eeb9c96d61b5ff1::pkg::func
"<0xd95b4510206e13fbe9413bc61183ac3b8375c8971adc54c81eeb9c96d61b5ff1::pkg1::TYPE1,0xd95b451
0206e13fbe9413bc61183ac3b8375c8971adc54c81eeb9c96d61b5ff1::pkg2::TYPE2>"
@0x0b72fb4d8106699c773bf58fd0a49ffe3a08bdd58f245946d160ed5463f7ba47 99 true \
--assign result_variable \
--move-call iota::tx_context::sender \
--assign sender \
--transfer-objects "[result_variable.2]" sender \
--move-call 0xd95b4510206e13fbe9413bc61183ac3b8375c8971adc54c81eeb9c96d61b5ff1::pkg::func2
"<0xd95b4510206e13fbe9413bc61183ac3b8375c8971adc54c81eeb9c96d61b5ff1::pkg1::TYPE1"
@0x0b72fb4d8106699c773bf58fd0a49ffe3a08bdd58f245946d160ed5463f7ba47 result_variable.0 \
--gas-budget 50000000

https://docs.iota.org/references/cli/ptb

https://docs.iota.org/references/cli/ptb

● BCS is a serialization format developed in the context of the Diem blockchain

○ now extensively used in most of the blockchains based on Move (IOTA, Sui, Aptos, 0L).

● BCS is not only used in the Move VM, but also used in transaction and event coding.

4. Binary Canonical Serialization (BCS)

88
https://docs.iota.org/references/ts-sdk/bcs
https://github.com/zefchain/bcs
https://www.npmjs.com/package/@mysten/bcs

var { bcs, fromHEX } = require('@mysten/bcs');
const Calzone = bcs.struct('Calzone', {
 flour: bcs.u16(),
 tomato_sauce: bcs.u16(),
 cheese: bcs.u16(),
});
const hex = "0a000300620272011200c800b4000000"
const calzone = Calzone.parse(fromHEX(hex));

https://docs.iota.org/references/ts-sdk/bcs
https://github.com/zefchain/bcs
https://www.npmjs.com/package/@mysten/bcs

● Collections

● Events

● Package upgrades

● Proper Testing

● Clock and Random objects

● …

What’s left?

89

- https://docs.iota.org/developer/iota-101/move-overview/
- https://docs.iota.org/references/cli/client
- https://intro.sui-book.com/unit-one/lessons/1_set_up_environment.html

https://docs.iota.org/developer/iota-101/move-overview/
https://docs.iota.org/references/cli/client
https://intro.sui-book.com/unit-one/lessons/1_set_up_environment.html

Thank you!

Mirko Zichichi

Engineering Team Lead, IOTA Foundation
mirko.zichichi@iota.org 90

