5th Scientific School on Blockchain & DLTs

IOTA & Move
Smart Contracts

Mirko Zichichi
Applied Research Engineer, IOTA Foundation
mirko.zichichi@iota.org

Mirko Zichichi

Applied Research Engineer
IOTA Foundation

Samuel Rufinatscha

Senior Software Engineer
IOTA Foundation

.....
erir e
.....

.....

Current Solution: IOTA EVM

- It's a Layer 2 (L2) solution where smart) 3
contracts are handled off-tangle in their 3 BLOGKCHAIN 3
L2 LEDGERS BLOCKCHAIN

dedicated blockchain BLOCKCHAIN
- The blockchain is run by a permissioned
committee of nodes.
- Uses Ethereum technology (EVM) el i RS
- Periodically commits the state to the L1 B

J BLOCKCHAIN |

- Layer 1 -> Stardust VM
- limited in its capabilities: you can't write your own apps, but you can:
- Create fungible tokens
- Create NFTs
- Store data and/or commitments on-tangle.
- Enhancing L1 with a better operating system -> increases network's utility

https://wiki.iota.org/learn/smart-contracts/core_concepts/smart-contracts/

https://wiki.iota.org/learn/smart-contracts/core_concepts/smart-contracts/

Functional equivalence to Ethereum

Chain. ID: Pmc7iH8b.. . Chain. ID: RG56ij8GQ.. ' Chain. ID: KIm314noP8..
pos pos
N G N\

Req : S Req
Tokens - Tokens

Chain State i Chain State Chain State

Req Req
Tokens Tokens

Adress: P6ZxYXA2.. Adress: d67HJ84cz..

https://wiki.iota.org/learn/smart-contracts/core_concepts/smart-contracts/

https://wiki.iota.org/learn/smart-contracts/core_concepts/smart-contracts/

.....

Move Virtual Machine

e Blockchain agnostic: we define how accounts and transactions work

e (Core VM is easily extensible with:

DST POPULAR

o Cryptography, signature schemes, ZKP verifiers ; “1"'(‘»‘1:‘.[11;@(&;‘.:. A6
. AND THE NETWOR
FECTS ARE TOO BIG

o Blockchain specific features (mana generation, system transactions,

account concept, etc.)

e Built-in gas metering and safe math: no undefined behavior is possible

Move Modularity

Consensus Storage

Address Transaction

format format

Gas metering custom logi.

Move on Account vs Object Ledger

e Unified Memory - Account Based Ledger: EVM, WASM, ISC, Aptos, Core Move
o Only sequential* execution
o Convenient as you can access any memory location without prior request
e Partitioned Memory - Object Based Ledger: Sui Move, Cardano, Radix, Stardust, etc.
o Parallel execution is possible, as each SC names which objects it will touch
o Heavy usage of a particular SC doesn't degrade others
o Execution needs only a fraction of the memory

o UTXO is a special case of the object ledger

vsen, ®

i ee
GRS
......

Move in Aptos vs Sui

https://academy-public.coinmarketcap.com/srd-optimized-uploads/a60864117eaa4a1b83631cc3cacd53fc.png o

https://academy-public.coinmarketcap.com/srd-optimized-uploads/a60864117eaa4a1b83631cc3cacd53fc.png

Move History

Early Move
Libra/Diem
2018-2021

Move Adapters
Sui & Aptos
2022-2023

Move 2024
Sui & Aptos Forks

Move
Language

Sui
Adapter

Aptos
Adapter

>

<

Sui Move
Language

Aptos Move
Language

)

se,
e
o Se,

.....

Key differences between
(Diem/Aptos) Move and IOTA/Sui Move (1/2)

- Object-Centric Global Storage
- In (Diem) Move, transactions can freely access resources, move_to and move_from.
- InIOTA Move transaction inputs are explicitly specified using unique identifiers for
objects (as opposed to resources) and packages (sets of modules).
- Addresses Represent Object IDs
- I0TA repurposes the address type as a 32-byte identifier used for both objects
(object id) and accounts (address).
Objects with Key Ability and Globally Unique IDs
In (Diem) Move, the key ability indicates that a type is a resource, which, along with an
account address, can serve as a key in global storage.

In IOTA Move, the key ability denotes an object type and requires the struct's first field

to be id: UID (which becomes the object id). .

https://docs.iota.org/developer/iota-101/move-overview/

https://docs.iota.org/developer/iota-101/move-overview/

0. Basics - Custom Types

A structure in IOTA Move is a custom type that contains key-value pairs, where the key is the name

of a property, and the value is what's stored.

Struct

struct Color {
red: u8,
green: u8,
blue: u8,

vsen, ®

i ee
GRS
......

https://docs.iota.org/developer/iota-101/objects/object-model

https://docs.iota.org/developer/iota-101/objects/object-model

0. Basics - Abilities

e Abilities are keywords in IOTA Move that define how types behave at the compiler level
o copy: the value of this type can be copied
m usually basic types: Coin is an asset type that should not be duplicated, so it
should not have copy ability
o drop: the value of this type can be automatically destroyed at the end of the scope
m for types without drop ability, not destroying them manually will cause a
compilation error.
o key: atype that can appear as a key in global storage

o store: the value of this type can be stored (for example, in another struct)

e Custom types that have the abilities key and store are considered to be assets in IOTA Move.

o Assets are stored in global storage and can be transferred between accounts.

https://docs.iota.org/developer/getting-started/create-a-module

https://docs.iota.org/developer/getting-started/create-a-module

1. Object Basics

e The first field of the struct must be the id of the object with type UID

Struct

struct Color f{
red: u8,
green: u8,
blue: u8,

https://docs.iota.org/developer/iota-101/objects/object-model

Object

struct ColorObject has key {
id: UID,
red: u8,
green: u8,
blue: u8,

https://docs.iota.org/developer/iota-101/objects/object-model

1. Object Basics - Key

e In Move the key ability denotes a type that can appear as a key in global storage
e Diem Move uses a (type, address)-indexed map

e |OTA Move uses a map keyed by object IDs.

use iota: :object: :UID;

struct ColorObject has key {
id: Ulp,

ese., ®

e
s
.....

https://docs.iota.org/developer/iota-101/objects/object-model

https://docs.iota.org/developer/iota-101/objects/object-model

1. Object Basics - Create an Object

e The only way to create a new UID for a IOTA object is to call object::new.
object enjoyer contract enjoyer

use iota: :object;
// tx_context::TxContext creates an alias to the TxContext struct in the tx_context module.
use iota: :tx_context: :TxContext;

fun new(red: u8, green: u8, blue: u8, ctx: &mut TxContext): ColorObject {
ColorObject {
id: object::new(ctx),
red,
green,
blue,

https://docs.iota.org/developer/iota-101/objects/object-model

https://docs.iota.org/developer/iota-101/objects/object-model

1. Object Basics - Store an Object

e The constructor puts the object value in a local variable.

e The object canthen

public entry fun
let color_object
transfer::

https://docs.iota.org/developer/iota-101/objects/object-model

be placed in persistent global storage.

(red: u8, green: u8, blue: u8, ctx:

(red, green, blue, ctx);

mut TxContext) {

(color_object, tx_context:: (ectx))

https://docs.iota.org/developer/iota-101/objects/object-model

2. Owned, Shared and Immutable Objects

e Objects in IOTA can have different types of ownership, with three categories:
o Owned mutable object -> is owned by an address/object
o Shared mutable object -> anyone can use it in a transaction

o Immutable object -> an object that can't be mutated, transferred or deleted.

e In other blockchains, every object is shared
o InIOTA Move programmers have the choice to implement a particular use-case using

shared objects, owned objects, or a combination.

e InlIOTA, atransaction that touches a shared object needs to pass through the consensus

mechanism. Whilst, a transaction that touches only owned objects does not need it.

https://docs.iota.org/developer/iota-101/objects/shared-owned

https://docs.iota.org/developer/iota-101/objects/shared-owned

2. Owned, Shared and Immutable Objects

e Address Owned object: exclusively accessible to their owner
o Theowneris a 32-byte user address or object ID

o Does not require consensus to be modified

module examples::custom_transfer {
// Error code for trying to transfer a locked object
const EObjectLocked: u64 = 0;

public struct 0 has key {
id: UID,
// An "0 object can only be transferred if this field is ‘true’
unlocked: bool

// Check that '0° is unlocked before transferring it

public fun transfer_unlocked(object: 0, to: address) {
assert!(object.unlocked, EObjectLocked);
iota::transfer::transfer(object, to)

https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

.!OT/\ o

https://docs.iota.org/developer/iota-101/objects/object-ownership/shared

2. Owned, Shared and Immutable Objects

e Shared object: anyone can read or write this object.
o mutable owned objects are single-writer

o shared objects require to sequence reads and writes

/// Init function is often ideal place for initializing
/// a shared object as it is called only once.
fun init(ctx: &mut TxContext) {
transfer::transfer(ShopOwnerCap {
id: object::new(ctx)
}, tx_context::sender(ctx));

// Share the object to make it accessible to everyone!
transfer::share_object(DonutShop {

id: object::new(ctx),

price: 1000,

balance: balance::zero()

})

https://docs.iota.org/developer/iota-1 01/ob'ects}ob'ect—ownershiQ/shared

https://docs.iota.org/developer/iota-101/objects/object-ownership/shared

2. Owned, Shared and Immutable Objects

e Immutable objects have no owner, so anyone can use them without the need for ordering
o packages are immutable objects

o you can freeze an initially mutable object

public entry fun (object: ColorObject) f{
transfer: : (object)

vsen, ®

i ee
GRS
......

https://docs.iota.org/developer/iota-101/objects/object-ownership/immutable

https://docs.iota.org/developer/iota-101/objects/object-ownership/immutable

3. Using Objects

e |OTA Move authentication mechanisms ensure only you can use objects owned by you or
shared in function calls.
e The object can be passed as a parameter to a function in two ways (core Move):
o Pass by reference
m &ColorObject
m &mut ColorObject
o Pass by value

m ColorObject

https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

3. Using Objects - Pass by Reference

e Read-only references (&) allow you to read data from the object

e Mutable references (&mut) allow you to mutate the data in the object.

/// Copies the values of ‘from_object' into ‘into_object".

public entry fun (from_object: &ColorObject, into_object: &mut ColorObject) {
into_object.red from_object.red;
into_object.green from_object.green;
into_object.blue from_object.blue;

B I0TA

https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

3. Using Objects - Pass by Value

e Pass objects by value into an entry function means the object is moved out of storage.

e Objects cannot be arbitrarily dropped and must be either consumed (e.g., transferred) or

deleted
public entry fun ¢ (object: ColorObject) {
let ColorObject { id, red: _, green: _, blue: _ } = object;
object:: (id);
}
public entry fun (object: ColorObject, recipient: address) {
transfer:: (object, recipient)

B I0TA

https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

4. Object Wrapping

e InIOTA Move, you can organize data structs by putting a field of struct type in another

e Toembed a struct type in an object struct (with a key ability), the struct type must have the

store ability.

struct Wrapping has key {
ids UID,
obj: Wrapped,

struct Wrapped has key, store {
value: u64,

}

l OTA

https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

4. Object Wrapping

e When an object is wrapped into another object:
o it no longer exists independently on the ledger; it becomes part of the data of the
object that wraps it;
o isno longer findable by its objectID,
o isno longer passable as an argument in transactions procedures calls; the only
access point is through the wrapping object (you need to pass this as argument).
e Unwrapping
o you can then take out the wrapped object and transfer it to an address;
o when an object is unwrapped, it becomes an independent object again;

o wrapped objects cannot be unwrapped unless the wrapping object is destroyed

https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

struct ObjectWrapper has key {
id: UID,
original_owner: address,
o . to_swap: Object,
4. Object Wrapping |
public entry fun request_swap(object: Object, service_address: address, ctx:
let wrapper = ObjectWrapper {
id: object::new(ctx),
original_owner: tx_context::sender(ctx),
to_swap: object,
ok
transfer::transfer(wrapper, service_address);
I
public entry fun execute_swap(wrapperl: ObjectWrapper, wrapper2: ObjectWrap
// Unpack both wrappers, cross send them to the other owner.
let ObjectWrapper {
iidaiday;
original_owner: original_ownerl,
to_swap: objectl,
} = wrapperl;

let ObjectWrapper {
1dsdid2;,
original_owner: original_owner2,
to_swap: object2,

} = wrapper2;

// Perform the swap.
transfer::transfer(objectl, original_owner2);

)]])) transfer::transfer(object2, original_ownerl);
https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped }

https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

5. Dynamic Fields

e |OTA Move provides dynamic fields with arbitrary names, added and removed on-the-fly

(not fixed at publish), which can store heterogeneous values.

e This approach overcomes the following limitations:
o Object's have a finite set of fields, fixed when its module is declared.
o Objects can become very large if they wrap several other objects (high gas fees).

o Itis not possible to store a collection of objects (e.g., vector) of heterogeneous types.

https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

5. Dynamic Fields - Add field

e This function takes the Child object by value and makes it a dynamic field of the Parent
object with name b"child",
o sender address owns the Parent object;

o the Parent object owns the Child object, and can refer to it by the name b'child".

use iota::dynamic_object_field as ofield;

public fun add_child(parent: &mut Parent, child: Child) {
ofield::add(&mut parent.id, b"child", child);

vsen, ®

i ee
GRS
......

https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

5. Dynamic Fields - Access field

use iota::dynamic_object_field as ofield;

public fun mutate_child(child: &mut Child) {
child.count = child.count + 1;

¥

public fun mutate_child_via_parent(parent: &mut Parent) {

mutate_child(ofield: :borrow_mut(
&mut parent.id,
b*ghila",

));

https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

.....
orilre
......

https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

5. Dynamic Fields - Remove field

use iota::dynamic_object_field as ofield;

public fun delete_child(parent: &mut Parent) {
let Child { id, count: _ } = reclaim_child(parent);

object::delete(id);

public fun reclaim_child(parent: &mut Parent, ctx: &mut TxContext): Child {
ofield::remove(
&mut parent.id,
b*child",
1

ese., ®

et te
s

. Lo

https://docs.iota.org/developer/iota-101/objects/dynamic-fieds/ e

https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

6. Transfer to Object

e Transfer objects to an object ID works in the same way as an object transfer to an address

(using the same functions)

e Transfering an object to another object means establishing a form of parent-child
authentication relationship.
o Objects transferred to another object can be received by the owner of the parent object.

o The parent (receiving) object module defines the access control for receiving a child obj.

// Transfers the object ‘b’ to the address 0xADD
iota::transfer::public_transfer(b, @@xADD);

// Transfers the object ¢’ to the object with object ID 0x0B
iota::transfer::public_transfer(c, @0x0B);

#10TA

https://docs.iota.org/developer/iota-101/objects/transfers/transfer-to-object

https://docs.iota.org/developer/iota-101/objects/transfers/transfer-to-object

6. Transfer to Object - Receive

e After an object ¢ has been sent to another object p, p must then receive ¢ to do anything with it.

e The module of the type of p defines access control policies and other restrictions on ¢

/// This function will receive a coin sent to the ‘Account’ object and then
/// join it to the balance for each coin type.
/// Dynamic fields are used to index the balances by their coin type.
public fun accept_payment<T>(account: &mut Account, sent: Receiving<Coin<T>>) {
// Receive the coin that was sent to the ‘account’ object
// Since ‘Coin’ is not defined in this module, and since it has the ‘store’
// ability we receive the coin object using the “transfer::public_receive’ function.
let coin = transfer::public_receive(&mut account.id, sent);
let account_balance_type = AccountBalance<T>{};
let account_uid = &mut account.id;

// Check if a balance of that coin type already exists.

// If it does then merge the coin we just received into it,

// otherwise create new balance.

if (df::exists_(account_uid, account_balance_type)) {
let balance: &mut Coin<T> = df::borrow_mut(account_uid, account_balance_type);
coin::join(balance, coin);

} else {
df::add(account_uid, account_balance_type, coin);

IOTA
https://docs.iota.org/developetr } o 35

https://docs.iota.org/developer/iota-101/objects/transfers/transfer-to-object

7. One-Time Witness (OTW)

e Special type guaranteed to have at most one instance: useful for limiting certain actions to only

happen once (e.g., creating a coin). The only instance is passed to its module's init function when

its package is published. In Move, a type is considered a OTW if:
o Itsname is the same as its module's names, all uppercased.
o It has ONLY the drop ability

o It has no fields, or a single bool field.

module examples::mycoin {

/// Name matches the module name
struct MYCOIN has drop {}

/// The instance 1s received as the first argument

fun init(witness: MYCOIN, ctx: &mut TxContext) {
A s el

b

https://docs.iota.org/developer/iota-101/move-overview/one-time-witness }

FIOTA

https://docs.iota.org/developer/iota-101/move-overview/one-time-witness

8. Generics

struct Box<T> {

e Generics are abstract stand-ins for concrete types or other properties. value: T

e Conditions to enforce that the type passed into the generic must have certain abilities.

// T must be copyable and droppable
struct Box<T: store + drop> has key, store {

value: T

i

e Using generics in functions

public fun create_box<T>(value: T): Box<T> {
Box<T> { value }

// value will be of type storage::Box<bool>
let bool_box = storage::create_box<bool>(true);
// value will be of the type storage::Box<u64>

let u64_box = storage::create_box<u64>(1000000);

IOTA .-

https://intro.sui-book.com/unit-three/lessons/2_intro_to_generics.html#intro-to-generics

https://intro.sui-book.com/unit-three/lessons/2_intro_to_generics.html#intro-to-generics

9. Hot Potato Pattern

1. This pattern requires that function B must be called immediately after function A, when
function A returns a hot potato and function B consumes it.
2. Flash loan:
a. create a 'Receipt’ struct that
m cannot be discarded because it does not have "drop,
m cannot be put in persistent storage because it does not have ‘key,
m cannot be transferred or wrapped because it does not have “store'.
b. Have a loan" function that requests a loan of ‘amount’ from ‘lender and returns the
‘Receipt’

c. theonly way to get rid of it is to call ‘repay” at some point forcing to pay back the debt.

https://docs.iota.org/developer/iota-101/move-overview/patterns/hot-potato o .".. . 38

https://docs.iota.org/developer/iota-101/move-overview/patterns/hot-potato

10. Capability Pattern

e This pattern enables the authorization of specific actions with an object.
o e.g.,the UpgradeCap is used to authorize the upgrading of packages.

o e.g.the TreasuryCap grants the authority to manage a Coin treasury functions.

/// Type representing the capability to create new 'Item’s.
public struct AdminCap has key { id: UID }

/// Custom NFT-like type representing an item.
public struct Item has key, store { id: UID, name: String }

/// Module initializer, called once during the module's deployment.
/// This function creates a single instance of ‘AdminCap’ and assigns it to the publisher.
fun init(ctx: &mut TxContext) {
transfer::transfer(AdminCap {
id: object::new(ctx)
}, tx_context::sender(ctx))

b

/// Function to create a new ‘Item’. It requires ‘AdminCap’ to authorize the action.
public fun create_item(_: &AdminCap, name: String, ctx: &mut TxContext): Item {
let item = Item {
id: object::new(ctx),
name,
h
item

.!OT/\ -

https://docs.iota.org/developer/iota-101/move-overview/patterns/capabilities S

https://docs.iota.org/developer/iota-101/move-overview/patterns/capabilities

Interacting with a .
IOTA Move Module

0. Create a IOTA Move Package - Modules file

https://docs.iota.org/developer/getting-started/create-a-package

e ee
Lot e

https://docs.iota.org/developer/getting-started/create-a-package

module my_first_package::my_module {

// Imports

use iota::object::{Self, UID};

use iota::transfer;

use iota::tx_context::{Self, TxContext};

(]
o. erte a // Struct definitions

struct Sword has key, store {

IOTA Move Package i

strength: u64,

struct Forge has key, store {
id: UID,
swords_created: u64,

// Module initializer to be executed when this module is published
fun init(ctx: &mut TxContext) {
let admin = Forge {
id: object::new(ctx),
swords_created: 0,
HH
// Transfer the forge object to the module/package publisher
transfer::public_transfer(admin, tx_context::sender(ctx));

// Accessors required to read the struct attributes
public fun magic(self: &Sword): u64 {
self.magic

public fun strength(self: &Sword): u64 {
self.strength

public fun swords_created(self: &Forge): u64 {
self.swords_created

// Public/entry functions

https:/docs.iota.org/developer/getting-started/create-a-module // Private functions

https://docs.iota.org/developer/getting-started/create-a-module

1. Build and Publish a IOTA Move Package

iota move build
iota move test

iota client publish --gas-budget 5000000

#[test]
public fun test_sword() {

let mut ctx = tx_context::dummy();

let sword = Sword {
id: object::new(&mut ctx),
magic: 42,
strength: 7,

-

assert!(magic(&sword) == 42 && strength(&sword) == 7, 1);

IOTA 3

https://docs.iota.org/developer/getting-started/build-test I
https://docs.iota.org/developer/getting-started/publish

https://docs.iota.org/developer/getting-started/build-test
https://docs.iota.org/developer/getting-started/publish

2. Interact with a Package

e Now that the package is on chain you can use the

$ iota client call [Keelnalagtlalel

to make individual calls to package functions

iota client call \

--package
0x83a30c4c3chbdd33068d36fc18d1£f097£f9196b79a475b7fe69f517063b376dd23 \
--module luckyplumber \

--function get mad \

--type-args

0xd95b4510206e13fbe9413bc61183ac3b8375c8971adc54c8leeb9c96d6lbbffl: :btfa
::BTFType \

-—args 44
0x59f9%9ed7d8f7c7ed490a63e572c87705e23667570564251e3a20ceedf9c8£961d
--gas-budget 50000000 \

https://docs.iota.org/references/cli/client

https://docs.iota.org/references/cli/client

2. Interact with a Package - PTB

e You can construct more advanced blocks of transactions using the
$ iota client ptb [celalagiigleR

e Ingeneral, transactions on IOTA are composed of:

o anumber of commands
o that execute on inputs

o to define some results

https://docs.iota.org/referencesicli/ptb

https://docs.iota.org/references/cli/ptb

3. Programmable Transaction Blocks

e The inputs value of a PTB is value is a vector of arguments, either objects or pure values

e The commands value of a PTB is a vector of commands using inputs or results to execute code
o TransferObjects sends (one or more) objects to a specified address
o SplitCoins splits off (one or more) coins from a single coin. It can be any iota::coin:Coin<_>
o MergeCoins merges (one or more) coins into a single coin
o MakeMoveVec creates a vector of Move values
o MoveCall invokes either an entry or a public Move function in a published package.
o Publish creates a new package and calls the init function of each module in the package.
o Upgrade upgrades an existing package.

e Theresult values is a vector of values that can be produced by each command; the type of the

value can be any arbitrary Move type, not limited to objects or pure values.

e APTB can perform up to 1,024 unique operations in a single execution.

https://docs.iota.org/developer/iota-101/transactions/ptb/prog-txn-blocks

https://docs.iota.org/developer/iota-101/transactions/ptb/prog-txn-blocks

3. Programmable Transaction Blocks

$ iota client ptb \

--move-call 0xd95b4510206e13fbe9413bc61183ac3b8375¢c8971adc54c8leeb9c96d6lb5ffl: :pkg:::func
"<0xd95b4510206e13fbe9413bc61183ac3b8375c8971adc54c81leeb9c96d6lb5ffl: :pkgl: :TYPEL1, 0xd95b451
0206e13fbe9413bc61183ac3b8375¢c8971adc54c8leeb9c96dolb5ffl: :pkg2: :TYPE2>"
@0x0b72fb4d8106699c773bf58fd0ad49ffe3a08bdd58f245946d160ed5463f7bad7 99 true \

--assign result variable \

--move-call iota::tx context::sender \

--assign sender \

--transfer-objects "[result variable.2]" sender \

--move-call 0xd95b4510206e13fbe9413bc61183ac3b8375¢c8971adc54c8leeb9c96d6lb5ffl: :pkg:::func?
"<0xd95b4510206e13fbe9413bc61183ac3b8375¢c8971adc54c8leeb9c96d6lb5ffl: :pkgl: :TYPEL"
@0x0b72fb4d8106699c773bf58£d0a49ffe3a08bdd58£245946d160ed5463f7bad7 result variable.O \
-—-gas-budget 50000000

https://docs.iota.org/references/cli/ptb

https://docs.iota.org/references/cli/ptb

4. public vs entry functions

e The public modifier allows a function to be called from a PTB and also from other modules
o NO restrictions on parameters

e The entry modifier allows a function to be called directly from a PTB as a module "entrypoint”.

o entry functions parameters must be inputs to the PTB (not results of previous command)

o only allowed to return types that have drop

e Use the entry modifier when:

o You want strong guarantees that your function is not being combined with third-party
module functions (e.g., swap protocol that does not want a flash loan)
o public function signatures must be maintained by upgrades (entry function not).

o Itisalso possible to create a public entry function, can be called by other modules

https://docs.iota.org/developer/iota-101/move-overview/entry-functions

https://docs.iota.org/developer/iota-101/move-overview/entry-functions

5. Binary Canonical Serialization (BCS)

e BCS s a serialization format developed in the context of the Diem blockchain
o now extensively used in most of the blockchains based on Move (I0TA, Sui, Aptos, OL).

e BCSis notonly used in the Move VM, but also used in transaction and event coding.

var { bcs, fromHEX } = require('@mysten/bcs');
const Calzone = bcs.struct('Calzone', {

flour: becs.ulo6 (),

tomato sauce: bcs.ulb6 (),

cheese: bcs.ulo (),
});
const hex = " 0a000300620272011200c800b4000000"
const calzone = Calzone.parse (fromHEX (hex)) ;

https://docs.iota.org/references/ts-sdk/bcs
https://github.com/zefchain/bcs
https://www.npmjs.com/package/@mysten/bcs

'IOT/\49

https://docs.iota.org/references/ts-sdk/bcs
https://github.com/zefchain/bcs
https://www.npmjs.com/package/@mysten/bcs

What's left?

e Collections

e Ffvents

e Package upgrades
e Proper Testing

e Clock and Random objects

- https://docs.iota.org/developer/iota-101/move-overview/

- https://docs.iota.org/references/cli/client
- https://intro.sui-book.com/unit-one/lessons/1 set up environment.html

https://docs.iota.org/developer/iota-101/move-overview/
https://docs.iota.org/references/cli/client
https://intro.sui-book.com/unit-one/lessons/1_set_up_environment.html

Thank you!

Mirko Zichichi

Applied Research Engineer, IOTA Foundation
mirko.zichichi@iota.org

