
IOTA
Smart Contracts

Mirko Zichichi
Applied Research Engineer, IOTA Foundation
mirko.zichichi@iota.org

5th Scientific School on Blockchain & DLTs

1

2

Mirko Zichichi
Applied Research Engineer

IOTA Foundation

Samuel Rufinatscha
Senior Software Engineer

IOTA Foundation

IOTA Smart Contracts

3

- It’s a Layer 2 (L2) solution where smart
contracts are handled off-tangle in their
dedicated blockchain

- The blockchain is run by a permissioned
committee of nodes.

- Uses Ethereum technology (EVM)
- Periodically commits the state to the L1

Current Solution: IOTA EVM

- Layer 1 -> Stardust VM
- limited in its capabilities: you can’t write your own apps, but you can:

- Create fungible tokens
- Create NFTs
- Store data and/or commitments on-tangle.

- Enhancing L1 with a better operating system -> increases network’s utility

4https://wiki.iota.org/learn/smart-contracts/core_concepts/smart-contracts/

https://wiki.iota.org/learn/smart-contracts/core_concepts/smart-contracts/

5https://wiki.iota.org/learn/smart-contracts/core_concepts/smart-contracts/

https://wiki.iota.org/learn/smart-contracts/core_concepts/smart-contracts/

Sui Move Flavor

6

● Blockchain agnostic: we define how accounts and transactions work

● Core VM is easily extensible with:

○ Cryptography, signature schemes, ZKP verifiers

○ Blockchain specific features (mana generation, system transactions,

account concept, etc.)

● Built-in gas metering and safe math: no undefined behavior is possible

Move Virtual Machine

7

Node Software

Blockchain Adapter

MoveVM
Interpreter
+ GasLogic

Address
format

Transaction
format

Gas metering custom logic

Consensus Storage

Cryptography, new features, ZK,...

Move Modularity

● Unified Memory - Account Based Ledger: EVM, WASM, ISC, Aptos, Core Move

○ Only sequential* execution

○ Convenient as you can access any memory location without prior request

● Partitioned Memory - Object Based Ledger: Sui Move, Cardano, Radix, Stardust, etc.

○ Parallel execution is possible, as each SC names which objects it will touch

○ Heavy usage of a particular SC doesn’t degrade others

○ Execution needs only a fraction of the memory

○ UTXO is a special case of the object ledger

Move on Account vs Object Ledger

9

Move in Aptos vs Sui

10https://academy-public.coinmarketcap.com/srd-optimized-uploads/a60864117eaa4a1b83631cc3cacd53fc.png

https://academy-public.coinmarketcap.com/srd-optimized-uploads/a60864117eaa4a1b83631cc3cacd53fc.png

Move History

11

Early Move
Libra/Diem
2018-2021

Move Adapters
Sui & Aptos
2022-2023

Move 2024
Sui & Aptos Forks

Sui
Adapter

Aptos
Adapter

Move
Language

Sui Move
Language

Aptos Move
Language

IOTA flavored Move

12

- Object-Centric Global Storage

- In (Diem) Move, transactions can freely access resources, move_to and move_from.

- In IOTA Move transaction inputs are explicitly specified using unique identifiers for

objects (as opposed to resources) and packages (sets of modules).

- Addresses Represent Object IDs

- IOTA repurposes the address type as a 32-byte identifier used for both objects

(object id) and accounts (address).

- Objects with Key Ability and Globally Unique IDs

- In (Diem) Move, the key ability indicates that a type is a resource, which, along with an

account address, can serve as a key in global storage.

- In IOTA Move, the key ability denotes an object type and requires the struct's first field

to be id: UID (which becomes the object id).

Key differences between
(Diem/Aptos) Move and IOTA/Sui Move (1/2)

13https://docs.iota.org/developer/iota-101/move-overview/

https://docs.iota.org/developer/iota-101/move-overview/

A structure in IOTA Move is a custom type that contains key-value pairs, where the key is the name

of a property, and the value is what's stored.

 Struct

0. Basics - Custom Types

14https://docs.iota.org/developer/iota-101/objects/object-model

https://docs.iota.org/developer/iota-101/objects/object-model

● Abilities are keywords in IOTA Move that define how types behave at the compiler level

○ copy: the value of this type can be copied

■ usually basic types: Coin is an asset type that should not be duplicated, so it

should not have copy ability

○ drop: the value of this type can be automatically destroyed at the end of the scope

■ for types without drop ability, not destroying them manually will cause a

compilation error.

○ key: a type that can appear as a key in global storage

○ store: the value of this type can be stored (for example, in another struct)

● Custom types that have the abilities key and store are considered to be assets in IOTA Move.

○ Assets are stored in global storage and can be transferred between accounts.

0. Basics - Abilities

15https://docs.iota.org/developer/getting-started/create-a-module

https://docs.iota.org/developer/getting-started/create-a-module

● The first field of the struct must be the id of the object with type UID

 Struct Object

1. Object Basics

16https://docs.iota.org/developer/iota-101/objects/object-model

https://docs.iota.org/developer/iota-101/objects/object-model

● In Move the key ability denotes a type that can appear as a key in global storage

● Diem Move uses a (type, address)-indexed map

● IOTA Move uses a map keyed by object IDs.

1. Object Basics - Key

17https://docs.iota.org/developer/iota-101/objects/object-model

https://docs.iota.org/developer/iota-101/objects/object-model

● The only way to create a new UID for a IOTA object is to call object::new.

1. Object Basics - Create an Object

18https://docs.iota.org/developer/iota-101/objects/object-model

https://docs.iota.org/developer/iota-101/objects/object-model

● The constructor puts the object value in a local variable.

● The object can then be placed in persistent global storage.

1. Object Basics - Store an Object

19https://docs.iota.org/developer/iota-101/objects/object-model

https://docs.iota.org/developer/iota-101/objects/object-model

● Objects in IOTA can have different types of ownership, with three categories:

○ Owned mutable object -> is owned by an address/object

○ Shared mutable object -> anyone can use it in a transaction

○ Immutable object -> an object that can't be mutated, transferred or deleted.

● In other blockchains, every object is shared

○ In IOTA Move programmers have the choice to implement a particular use-case using

shared objects, owned objects, or a combination.

● In IOTA, a transaction that touches a shared object needs to pass through the consensus

mechanism. Whilst, a transaction that touches only owned objects does not need it.

2. Owned, Shared and Immutable Objects

20https://docs.iota.org/developer/iota-101/objects/shared-owned

https://docs.iota.org/developer/iota-101/objects/shared-owned

2. Owned, Shared and Immutable Objects

21

● Address Owned object: exclusively accessible to their owner

○ The owner is a 32-byte user address or object ID

○ Does not require consensus to be modified

https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

https://docs.iota.org/developer/iota-101/objects/object-ownership/shared

2. Owned, Shared and Immutable Objects

22

● Shared object: anyone can read or write this object.

○ mutable owned objects are single-writer

○ shared objects require to sequence reads and writes

https://docs.iota.org/developer/iota-101/objects/object-ownership/shared

https://docs.iota.org/developer/iota-101/objects/object-ownership/shared

● Immutable objects have no owner, so anyone can use them without the need for ordering

○ packages are immutable objects

○ you can freeze an initially mutable object

2. Owned, Shared and Immutable Objects

23https://docs.iota.org/developer/iota-101/objects/object-ownership/immutable

https://docs.iota.org/developer/iota-101/objects/object-ownership/immutable

● IOTA Move authentication mechanisms ensure only you can use objects owned by you or

shared in function calls.

● The object can be passed as a parameter to a function in two ways (core Move):

○ Pass by reference

■ &ColorObject

■ &mut ColorObject

○ Pass by value

■ ColorObject

3. Using Objects

24https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

● Read-only references (&) allow you to read data from the object

● Mutable references (&mut) allow you to mutate the data in the object.

3. Using Objects - Pass by Reference

25https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

● Pass objects by value into an entry function means the object is moved out of storage.

● Objects cannot be arbitrarily dropped and must be either consumed (e.g., transferred) or

deleted

3. Using Objects - Pass by Value

26https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

https://docs.iota.org/developer/iota-101/objects/object-ownership/address-owned

● In IOTA Move, you can organize data structs by putting a field of struct type in another

● To embed a struct type in an object struct (with a key ability), the struct type must have the

store ability.

4. Object Wrapping

27https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

● When an object is wrapped into another object:

○ it no longer exists independently on the ledger; it becomes part of the data of the

object that wraps it;

○ is no longer findable by its objectID;

○ is no longer passable as an argument in transactions procedures calls; the only

access point is through the wrapping object (you need to pass this as argument).

● Unwrapping

○ you can then take out the wrapped object and transfer it to an address;

○ when an object is unwrapped, it becomes an independent object again;

○ wrapped objects cannot be unwrapped unless the wrapping object is destroyed

4. Object Wrapping

28https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

4. Object Wrapping

29https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

https://docs.iota.org/developer/iota-101/objects/object-ownership/wrapped

● IOTA Move provides dynamic fields with arbitrary names, added and removed on-the-fly

(not fixed at publish), which can store heterogeneous values.

● This approach overcomes the following limitations:

○ Object's have a finite set of fields, fixed when its module is declared.

○ Objects can become very large if they wrap several other objects (high gas fees).

○ It is not possible to store a collection of objects (e.g., vector) of heterogeneous types.

5. Dynamic Fields

30https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

● This function takes the Child object by value and makes it a dynamic field of the Parent

object with name b"child";

○ sender address owns the Parent object;

○ the Parent object owns the Child object, and can refer to it by the name b"child".

5. Dynamic Fields - Add field

31https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

5. Dynamic Fields - Access field

32https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

5. Dynamic Fields - Remove field

33https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

https://docs.iota.org/developer/iota-101/objects/dynamic-fields/

6. Transfer to Object

34https://docs.iota.org/developer/iota-101/objects/transfers/transfer-to-object

● Transfer objects to an object ID works in the same way as an object transfer to an address

(using the same functions)

● Transfering an object to another object means establishing a form of parent-child

authentication relationship.

○ Objects transferred to another object can be received by the owner of the parent object.

○ The parent (receiving) object module defines the access control for receiving a child obj.

https://docs.iota.org/developer/iota-101/objects/transfers/transfer-to-object

6. Transfer to Object - Receive

35https://docs.iota.org/developer/iota-101/objects/transfers/transfer-to-object

● After an object c has been sent to another object p, p must then receive c to do anything with it.

● The module of the type of p defines access control policies and other restrictions on c

https://docs.iota.org/developer/iota-101/objects/transfers/transfer-to-object

7. One-Time Witness (OTW)

36https://docs.iota.org/developer/iota-101/move-overview/one-time-witness

● Special type guaranteed to have at most one instance: useful for limiting certain actions to only

happen once (e.g., creating a coin). The only instance is passed to its module's init function when

its package is published. In Move, a type is considered a OTW if:

○ Its name is the same as its module's names, all uppercased.

○ It has ONLY the drop ability

○ It has no fields, or a single bool field.

https://docs.iota.org/developer/iota-101/move-overview/one-time-witness

8. Generics

37https://intro.sui-book.com/unit-three/lessons/2_intro_to_generics.html#intro-to-generics

● Generics are abstract stand-ins for concrete types or other properties.

● Conditions to enforce that the type passed into the generic must have certain abilities.

● Using generics in functions

https://intro.sui-book.com/unit-three/lessons/2_intro_to_generics.html#intro-to-generics

9. Hot Potato Pattern

38https://docs.iota.org/developer/iota-101/move-overview/patterns/hot-potato

1. This pattern requires that function B must be called immediately after function A, when

function A returns a hot potato and function B consumes it.

2. Flash loan:

a. create a `Receipt` struct that

■ cannot be discarded because it does not have `drop`,

■ cannot be put in persistent storage because it does not have `key`,

■ cannot be transferred or wrapped because it does not have `store`.

b. Have a `loan` function that requests a loan of `amount` from `lender` and returns the

`Receipt`

c. the only way to get rid of it is to call `repay` at some point forcing to pay back the debt.

https://docs.iota.org/developer/iota-101/move-overview/patterns/hot-potato

10. Capability Pattern

39https://docs.iota.org/developer/iota-101/move-overview/patterns/capabilities

● This pattern enables the authorization of specific actions with an object.

○ e.g., the UpgradeCap is used to authorize the upgrading of packages.

○ e.g. the TreasuryCap grants the authority to manage a Coin treasury functions.

https://docs.iota.org/developer/iota-101/move-overview/patterns/capabilities

Interacting with a
IOTA Move Module

40

0. Create a IOTA Move Package - Modules file

41

https://docs.iota.org/developer/getting-started/create-a-package

https://docs.iota.org/developer/getting-started/create-a-package

0. Write a
IOTA Move Package

42https://docs.iota.org/developer/getting-started/create-a-module

https://docs.iota.org/developer/getting-started/create-a-module

1. Build and Publish a IOTA Move Package

43https://docs.iota.org/developer/getting-started/build-test
https://docs.iota.org/developer/getting-started/publish

$ iota move build
$ iota move test
$
$
$ iota client publish --gas-budget 5000000

https://docs.iota.org/developer/getting-started/build-test
https://docs.iota.org/developer/getting-started/publish

● Now that the package is on chain you can use the

 command

to make individual calls to package functions

2. Interact with a Package

44https://docs.iota.org/references/cli/client

$ iota client call

iota client call \
--package
0x83a30c4c3cbdd33068d36fc18d1f097f9196b79a475b7fe69f517063b376dd23 \
--module luckyplumber \
--function get_mad \
--type-args
0xd95b4510206e13fbe9413bc61183ac3b8375c8971adc54c81eeb9c96d61b5ff1::btfa
::BTFType \
--args 44
0x59f9ed7d8f7c7ed490a63e572c87705e23667570564251e3a20ceedf9c8f961d
--gas-budget 50000000 \

https://docs.iota.org/references/cli/client

● You can construct more advanced blocks of transactions using the

 command.

● In general, transactions on IOTA are composed of:

○ a number of commands

○ that execute on inputs

○ to define some results

2. Interact with a Package - PTB

45https://docs.iota.org/references/cli/ptb

$ iota client ptb

https://docs.iota.org/references/cli/ptb

● The inputs value of a PTB is value is a vector of arguments, either objects or pure values

● The commands value of a PTB is a vector of commands using inputs or results to execute code

○ TransferObjects sends (one or more) objects to a specified address

○ SplitCoins splits off (one or more) coins from a single coin. It can be any iota::coin::Coin<_>

○ MergeCoins merges (one or more) coins into a single coin

○ MakeMoveVec creates a vector of Move values

○ MoveCall invokes either an entry or a public Move function in a published package.

○ Publish creates a new package and calls the init function of each module in the package.

○ Upgrade upgrades an existing package.

● The result values is a vector of values that can be produced by each command; the type of the

value can be any arbitrary Move type, not limited to objects or pure values.

● A PTB can perform up to 1,024 unique operations in a single execution.

3. Programmable Transaction Blocks

46https://docs.iota.org/developer/iota-101/transactions/ptb/prog-txn-blocks

https://docs.iota.org/developer/iota-101/transactions/ptb/prog-txn-blocks

3. Programmable Transaction Blocks

47

$ iota client ptb \
--move-call 0xd95b4510206e13fbe9413bc61183ac3b8375c8971adc54c81eeb9c96d61b5ff1::pkg::func
"<0xd95b4510206e13fbe9413bc61183ac3b8375c8971adc54c81eeb9c96d61b5ff1::pkg1::TYPE1,0xd95b451
0206e13fbe9413bc61183ac3b8375c8971adc54c81eeb9c96d61b5ff1::pkg2::TYPE2>"
@0x0b72fb4d8106699c773bf58fd0a49ffe3a08bdd58f245946d160ed5463f7ba47 99 true \
--assign result_variable \
--move-call iota::tx_context::sender \
--assign sender \
--transfer-objects "[result_variable.2]" sender \
--move-call 0xd95b4510206e13fbe9413bc61183ac3b8375c8971adc54c81eeb9c96d61b5ff1::pkg::func2
"<0xd95b4510206e13fbe9413bc61183ac3b8375c8971adc54c81eeb9c96d61b5ff1::pkg1::TYPE1"
@0x0b72fb4d8106699c773bf58fd0a49ffe3a08bdd58f245946d160ed5463f7ba47 result_variable.0 \
--gas-budget 50000000

https://docs.iota.org/references/cli/ptb

https://docs.iota.org/references/cli/ptb

● The public modifier allows a function to be called from a PTB and also from other modules

○ NO restrictions on parameters

● The entry modifier allows a function to be called directly from a PTB as a module "entrypoint".

○ entry functions parameters must be inputs to the PTB (not results of previous command)

○ only allowed to return types that have drop

● Use the entry modifier when:

○ You want strong guarantees that your function is not being combined with third-party

module functions (e.g., swap protocol that does not want a flash loan)

○ public function signatures must be maintained by upgrades (entry function not).

○ It is also possible to create a public entry function, can be called by other modules

4. public vs entry functions

48https://docs.iota.org/developer/iota-101/move-overview/entry-functions

https://docs.iota.org/developer/iota-101/move-overview/entry-functions

● BCS is a serialization format developed in the context of the Diem blockchain

○ now extensively used in most of the blockchains based on Move (IOTA, Sui, Aptos, 0L).

● BCS is not only used in the Move VM, but also used in transaction and event coding.

5. Binary Canonical Serialization (BCS)

49
https://docs.iota.org/references/ts-sdk/bcs
https://github.com/zefchain/bcs
https://www.npmjs.com/package/@mysten/bcs

var { bcs, fromHEX } = require('@mysten/bcs');
const Calzone = bcs.struct('Calzone', {
 flour: bcs.u16(),
 tomato_sauce: bcs.u16(),
 cheese: bcs.u16(),
});
const hex = "0a000300620272011200c800b4000000"
const calzone = Calzone.parse(fromHEX(hex));

https://docs.iota.org/references/ts-sdk/bcs
https://github.com/zefchain/bcs
https://www.npmjs.com/package/@mysten/bcs

● Collections

● Events

● Package upgrades

● Proper Testing

● Clock and Random objects

● …

What’s left?

50

- https://docs.iota.org/developer/iota-101/move-overview/
- https://docs.iota.org/references/cli/client
- https://intro.sui-book.com/unit-one/lessons/1_set_up_environment.html

https://docs.iota.org/developer/iota-101/move-overview/
https://docs.iota.org/references/cli/client
https://intro.sui-book.com/unit-one/lessons/1_set_up_environment.html

Thank you!

Mirko Zichichi

Applied Research Engineer, IOTA Foundation
mirko.zichichi@iota.org 51

