
IOTA Smart Contracts
and

Mirko Zichichi
Research Scientist, IOTA Foundation
mirko.zichichi@iota.org

slides in collaboration with Levente Pap (IOTA Foundation)

4th Scientific School on Blockchain & DLTs

1

Mirko Zichichi
Research Scientist, IOTA Foundation

- PhD in Law, Science and Technology (MSCA grant)
- Universidad Politécnica de Madrid,

University of Bologna,
University of Turin

- Thesis: '’Decentralized Systems for the Protection and
Portability of Personal Data’‘

2

What are smart contracts?

3

“A smart contract is code deployed in a blockchain environment, OR the source code from which
such code was compiled.”
De Filippi, P. & Wray, C. & Sileno, G. (2021). Smart contracts. Internet Policy Review, 10(2). https://policyreview.info/glossary/smart-contracts

Smart Contracts

Hey IOTA, login
with my digital
passport!

Hey IOTA,
where do my
BioAvocados
come from?

Hey IOTA,
execute my
trading strategy!

Hey IOTA, I’m
lonely, let me
breed digital cats!

IOTA

4

https://policyreview.info/glossary/smart-contracts

● “Blockchain-based technologies can be understood as a distributed

network of computers, ideally organised in a decentralised way, mutually

agreeing on a common state while tolerating failures (incl. malicious

behaviour) to some extent.” https://policyreview.info/glossary/blockchain-based-technologies

● Notable blockchain operating systems:

○ Ethereum Virtual Machine: Ethereum, BSC, Avalanche, ISC, etc.

○ WebAssembly: Polkadot, Cosmos, Near, etc.

○ Bitcoin Script, Cardano Plutus, Radix Engine v2, etc.

Blockchain Environment -> Shared Global Computer

IOTA

5

https://policyreview.info/glossary/blockchain-based-technologies

IOTA Smart Contracts

6

- It’s a Layer 2 (L2) solution where smart
contracts are handled off-tangle in their
dedicated blockchain

- The blockchain is run by a permissioned
committee of nodes.

- Uses Ethereum technology (EVM)
- Periodically commits the state to the L1

IOTA Smart Contracts Today

- Layer 1 -> Stardust VM
- limited in its capabilities: you can’t write your own apps, but you can:

- Create fungible tokens
- Create NFTs
- Store data and/or commitments on-tangle.

- Enhancing L1 with a better operating system -> increases network’s utility

7https://wiki.iota.org/learn/smart-contracts/core_concepts/smart-contracts/

https://wiki.iota.org/learn/smart-contracts/core_concepts/smart-contracts/

- In IOTA Smart Contracts, each ISC chain has a L1 address (also known as the Chain ID)

- This address enables an ISC chain to control L1 assets (base tokens, native tokens and NFTs)

- The ISC chain, then, acts as a custodian of the L1 assets on behalf of different entities, that can
use them on the L2.

- The L2 ledger is a collection of on-chain accounts owned by different agents, i.e., a mapping:
Agent (account) ID => balances of L2 assets

IOTA Smart Contracts

8https://wiki.iota.org/learn/smart-contracts/core_concepts/smart-contracts/

https://wiki.iota.org/learn/smart-contracts/core_concepts/smart-contracts/

IOTA
Smart
Contracts

9https://wiki.iota.org/learn/smart-contracts/core_concepts/smart-contracts/

https://wiki.iota.org/learn/smart-contracts/core_concepts/smart-contracts/

Why have not we built ISC on L1?

10

Relies on ordered transactions grouped in
sequential blocks. The state of the shared
computer is updated with each new block.

Blockchain w/ EVM

BlockDAG with parallel blocks and causal
transaction ordering. Shared computer state is
updated concurrently.

Tangle

Global Accounts
User balances are in one giant “excel sheet”, which
can only be modified by one transaction at a time.

Fees in Base Currency
Execution and storage fees denominated in the
native currency of the blockchain.

Heavy Block Execution
With every transaction the whole global state is
updated and needs to be recalculated. Demands
CPU and memory, so beefier machines.

UTXO Accounts
User balances are represented as cash notes which
can be exchanged any time without waiting for
others.

No (explicit) Fees Before IOTA 2.0
In current IOTA fees are “paid” in PoW, in IOTA 2.0
with MANA.

Light Block Execution
Each block updates only part of the global state, so
no need to recalculate everything. Execution could
be distributed among several machines for scaling.

11

Levels of Programmability

12

● Pure “Unspent Transaction Output” - UTXO (Chrysalis - IOTA 1.0)

○ Track money balances, no programs

● UTXOs with hard coded scripts (Stardust - IOTA 1.5)

○ Execute predefined programs

● UTXOs with limited scripting (Bitcoin)

○ Write some programs

● UTXOs with Turing-complete scripts (Cardano Extended UTXO)

○ Write any program, but composability is cumbersome (no atomic combined operations)

● Account based ledger with virtual machine (ETH, Near, Polkadot, etc.)

○ Write any program and composability is easy

Levels of Programmability

13

● Safety?

○ Multimillion dollar exploits happen on a weekly basis. SCs are not formally

verifiable. The language in which they are coded has several “gotcha”s.

Poor platform for programming money.

○ Composability through opaque interfaces and dynamic callbacks:

hijacking contract calls is a feature, not a bug.

● User experience?

○ Each SC is a walled garden. Need to add assets manually to a wallet.

○ You never know what you actually approve via MetaMask.

● Scalability?

○ A popular NFT mint clogs the chain and increases gas fees for everyone.

Transactions have to wait on each other, even if they are unrelated.

In ETH, Near, etc. full programmability and
composability, but what about…

14

Move

15

● Domain Specific Language for programming with assets

● Inherits memory and type safety concepts from Rust

○ Compiler catches errors that would normally go undetected in Solidity

● Treats assets as first class citizens that can travel between SC boundaries

● Programs are formally verifiable

● Built-in language level permission controls

○ Transparent what an SC can do with your assets (read only, mutate, transfer)

Move Language

16

● Move represents assets using user-defined linear resource types.

● Move has ordinary types like integers and addresses that can be copied, but

resources can only be moved.

● Move resource safety -> analogous to conservation of mass in the physical world

● Linearity:

○ prevents “double spending” by moving a resource twice

○ forces a procedure to move all of its resources, avoiding accidental loss.

Move “Resource”

17Blackshear, Sam, et al. "Resources: A safe language abstraction for money." arXiv preprint https://arxiv.org/abs/2004.05106 (2020).

https://arxiv.org/abs/2004.05106

Move “Resource”

18

Solidity Move

Blackshear, Sam, et al. "Resources: A safe language abstraction for money." arXiv preprint https://arxiv.org/abs/2004.05106 (2020).

https://arxiv.org/abs/2004.05106

Move Executable Bytecode

19

● A Move execution platform relies on a compiler to transform source language

programs into programs in the Move bytecode language.

● The Move execution platform relies on a load-time bytecode verifier, that enforces

type, memory, and resource safety.

○ If the safety guarantees were only enforced by the compiler, an adversary could

subvert them by writing malicious bytecode directly and deploying it

Blackshear, Sam, et al. "Resources: A safe language abstraction for money." arXiv preprint https://arxiv.org/abs/2004.05106 (2020).

https://arxiv.org/abs/2004.05106

Move Persistent Global State

20

● Move execution occurs in the context of a persistent global state organized as a

partial map from account addresses -> resource data values

Blackshear, Sam, et al. "Resources: A safe language abstraction for money." arXiv preprint https://arxiv.org/abs/2004.05106 (2020).

https://arxiv.org/abs/2004.05106

Move Execution

21

● Begins by executing the main procedure of the transaction script

● A procedure is defined by a type signature and an executable body (Move bytecode

commands).

● Procedure calls are implemented using a standard call stack containing frames with

a procedure name, a set of local variables, and a return address.

Blackshear, Sam, et al. "Resources: A safe language abstraction for money." arXiv preprint https://arxiv.org/abs/2004.05106 (2020).

https://arxiv.org/abs/2004.05106

Move Module, i.e., the Smart Contract

22

● A Move module can declare both record types and procedures.

● Records can store primitive data values (booleans, addresses, …) as well as other

record values:

○ each record is declared as a resource or non-resource;

○ non-resource records cannot store resource records;

○ only resources can be stored in the global state.

● Module’s strong encapsulation:

privileged operations on the module’s declared types can only be performed by

procedures in the module

Blackshear, Sam, et al. "Resources: A safe language abstraction for money." arXiv preprint https://arxiv.org/abs/2004.05106 (2020).

https://arxiv.org/abs/2004.05106

Move References

23

● Move supports references to records and primitive values:

all reads and writes of record fields occur through a reference.

● ,References are either:

○ exclusive/mutable -> &mut

○ read-only -> &

● References are different from other Move values because they are transient

○ each reference must be created during the execution of a transaction script

and released before the end of that transaction script.

Blackshear, Sam, et al. "Resources: A safe language abstraction for money." arXiv preprint https://arxiv.org/abs/2004.05106 (2020).

https://arxiv.org/abs/2004.05106

Move Resource Safety

24

● At the beginning and end of a transaction script, all of the resources in the system

reside in the global state GS.

● Resource safety is a conservation property that relates the set of resources present

in state GSpre before the script to the set of resources present in state GSpost after the

script.

● In general terms, must guarantee that:

○ A resource M::T that is present in post-state GSpost was also present in

pre-state GSpre unless it is introduced by a Pack (Move bytecode for resource

creation) inside M during script execution

○ A resource M::T that was present in pre-state GSpre is also present in

post-state GSpost unless it is eliminated by an Unpack (Move bytecode for

resource deletion) inside M during script execution

Blackshear, Sam, et al. "Resources: A safe language abstraction for money." arXiv preprint https://arxiv.org/abs/2004.05106 (2020).

https://arxiv.org/abs/2004.05106

Move Flavors

25

● Blockchain agnostic: we define how accounts and transactions work

● Core VM is easily extensible with:

○ Cryptography, signature schemes, ZKP verifiers

○ Blockchain specific features (mana generation, system transactions,

account concept, etc.)

● Built-in gas metering and safe math: no undefined behavior is possible

Move Virtual Machine as the Blockchain OS

26

How do you access the shared computer’s memory?

I want to
read A3!

I want to write
column B!

I need
everything
in blue!

● Everybody wants to edit the same sheet

● One person needs 1 minute to update a cell

● Determine the order and time it takes to edit the

sheet with below requests

27

How do you access the shared computer’s memory?

I want to
read A3!

I want to write
column B!

I need
everything
in blue!

● The Aptos(EVM) way: Unified Global Memory

● Rule: one person at a time can open the sheet,

make the changes and then save it.

● Takes 1 + 1 + 1 = 3 minutes until everyone finishes.

1 min 1 min 1 min 28

How do you access the shared computer’s memory?

I want to
read A3!

I want to write
column B!

I need
everything
in blue!

● The Sui way: Partitioned Global Memory

● Rule: declare which cells you’ll edit. If they are not in

use, go ahead and edit them!

● Takes 1 + 1 = 2 minutes until everyone finishes.

1 min 1 min 29

● Modelling a transaction’s access to blockchain state with smart contracts is

analogous to modelling memory access in a computer by different threads.

● The Blockchain OS determines the access strategy

● Unified Memory - Account Based Ledger: EVM, WASM, ISC, Aptos, Core Move

○ Only sequential execution

○ Convenient as you can access any memory location without prior request

● Partitioned Memory - Object Based Ledger: Sui Move, Cardano, Radix, Stardust, etc.

○ Parallel execution is possible, as each SC names which objects it will touch

○ Heavy usage of a particular SC doesn’t degrade others

○ Execution needs only a fraction of the memory

○ UTXO is a special case of the object ledger

Move on Account vs Object Ledger

30

IOTA flavored Move

31

● Every entry in the ledger state is an Object

● Object = Move Resource

0. Ledger Basics - The State

32

● A Package Object is an immutable

read-only object that contains one or

several Move modules

● During Genesis, a Object A is created

containing the framework package

-> a set of modules defining the main

operations performed in the IOTA Tangle

● E.g., Coin module defines resource types,

such as how an IOTA Coin looks like.

○ It exposes the transfer function that

defines how to transfer the Coin.

0. Ledger Basics

33

● A Move Object is an instantiation of a resource

type previously defined in a module.

● Object B is a Coin that holds IOTA.

● Object B has two fields:

○ The amount of coins (100), and

○ The owner of the object (Address B)

0. Ledger Basics

34

● A transaction calls a function in a module. The arguments to the function could be:

○ Move Objects,

○ Pure arguments (addresses, numbers, strings, bytes)

0. Ledger Basics

35

● The outcome of transaction execution is what to update in the ledger state. (write set)

0. Ledger Basics - Transaction Execution

36

● The first field of the struct must be the id of the object with type UID

 Struct Object

1. Object Basics

37https://docs.sui.io/build/programming-with-objects/ch1-object-basics

https://docs.sui.io/build/programming-with-objects/ch1-object-basics

● In Move the key ability denotes a type that can appear as a key in global storage

● Core Move uses a (type, address)-indexed map

● Sui/IOTA Move uses a map keyed by object IDs.

1. Object Basics - Key

38https://docs.sui.io/build/programming-with-objects/ch1-object-basics

https://docs.sui.io/build/programming-with-objects/ch1-object-basics

● The only way to create a new UID for a Sui object is to call object::new.

1. Object Basics - Create an Object

39https://docs.sui.io/build/programming-with-objects/ch1-object-basics

https://docs.sui.io/build/programming-with-objects/ch1-object-basics

● The constructor puts the object value in a local variable.

● The object can then be placed in persistent global storage.

1. Object Basics - Store an Object

40https://docs.sui.io/build/programming-with-objects/ch1-object-basics

https://docs.sui.io/build/programming-with-objects/ch1-object-basics

● Sui/IOTA Move authentication mechanisms ensure only you can use objects owned by you

in function calls.

● The object can be passed as a parameter to a function in two ways (core Move):

○ Pass by reference

■ &ColorObject

■ &mut ColorObject

○ Pass by value

■ ColorObject

2. Using Objects

41https://docs.sui.io/build/programming-with-objects/ch2-using-objects

https://docs.sui.io/build/programming-with-objects/ch2-using-objects

● Read-only references (&) allow you to read data from the object

● Mutable references (&mut) allow you to mutate the data in the object.

2. Using Objects - Pass by Reference

42https://docs.sui.io/build/programming-with-objects/ch2-using-objects

https://docs.sui.io/build/programming-with-objects/ch2-using-objects

● Pass objects by value into an entry function means the object is moved out of storage.

● Objects cannot be arbitrarily dropped and must be either consumed (e.g., transferred) or

deleted

2. Using Objects - Pass by Value

43https://docs.sui.io/build/programming-with-objects/ch2-using-objects

https://docs.sui.io/build/programming-with-objects/ch2-using-objects

● Objects in IOTA can have different types of ownership, with two broad categories:

○ mutable objects -> can be owned by an address/object or can be shared

○ immutable objects -> an object that can't be mutated, transferred or deleted.

● Shared object: anyone can read or write this object.

○ mutable owned objects are single-writer

○ shared objects require to sequence reads and writes

● In other blockchains, every object is shared

● In Sui/IOTA Move programmers have the choice to implement a particular use-case using

shared objects, owned objects, or a combination.

● In Sui, a transaction that touches a shared object needs to pass through the consensus

mechanism. Whilst, a transaction that touches only owned objects does not need it.

3. Shared and Immutable Objects

44https://docs.sui.io/learn/objects

https://docs.sui.io/learn/objects

● Objects in IOTA can have different types of ownership, with two broad categories:

○ mutable objects -> can be owned by an address/object or can be shared

○ immutable objects -> an object that can't be mutated, transferred or deleted.

● Immutable objects have no owner, so anyone can use them

○ packages are immutable objects

○ you can freeze an initially mutable object

3. Shared and Immutable Objects

45https://docs.sui.io/build/programming-with-objects/ch3-immutable-objects

https://docs.sui.io/build/programming-with-objects/ch3-immutable-objects

● In Sui/IOTA Move, you can organize data structs by putting a field of struct type in another

● To embed a struct type in an object struct (with a key ability), the struct type must have the

store ability.

4. Object Wrapping

46https://docs.sui.io/build/programming-with-objects/ch4-object-wrapping

https://docs.sui.io/build/programming-with-objects/ch4-object-wrapping

● When an object is wrapped into another object:

○ it no longer exists independently on the ledger; it becomes part of the data of the

object that wraps it;

○ is no longer findable by its objectID;

○ is no longer passable as an argument in transactions procedures calls; the only

access point is through the wrapping object (you need to pass this as argument).

● Unwrapping

○ you can then take out the wrapped object and transfer it to an address;

○ when an object is unwrapped, it becomes an independent object again;

○ wrapped objects cannot be unwrapped unless the wrapping object is destroyed

4. Object Wrapping

47https://docs.sui.io/build/programming-with-objects/ch4-object-wrapping

https://docs.sui.io/build/programming-with-objects/ch4-object-wrapping

4. Object Wrapping

48https://docs.sui.io/build/programming-with-objects/ch4-object-wrapping

https://docs.sui.io/build/programming-with-objects/ch4-object-wrapping

● Sui/IOTA Move provides dynamic fields with arbitrary names, added and removed on-the-fly

(not fixed at publish), which can store heterogeneous values.

● This approach overcomes the following limitations:

○ Object's have a finite set of fields, fixed when its module is declared.

○ Objects can become very large if they wrap several other objects (high gas fees).

○ It is not possible to store a collection of objects (e.g., vector) of heterogeneous types.

5. Dynamic Fields

49https://docs.sui.io/build/programming-with-objects/ch5-dynamic-fields

https://docs.sui.io/build/programming-with-objects/ch5-dynamic-fields

● This function takes the Child object by value and makes it a dynamic field of the Parent

object with name b"child";

○ sender address owns the Parent object;

○ the Parent object owns the Child object, and can refer to it by the name b"child".

5. Dynamic Fields - Add field

50https://docs.sui.io/build/programming-with-objects/ch5-dynamic-fields

https://docs.sui.io/build/programming-with-objects/ch5-dynamic-fields

5. Dynamic Fields - Access field

51https://docs.sui.io/build/programming-with-objects/ch5-dynamic-fields

https://docs.sui.io/build/programming-with-objects/ch5-dynamic-fields

5. Dynamic Fields - Remove field

52https://docs.sui.io/build/programming-with-objects/ch5-dynamic-fields

https://docs.sui.io/build/programming-with-objects/ch5-dynamic-fields

6. Write a IOTA Move Package - Modules file

53https://docs.sui.io/build/programming-with-objects/ch5-dynamic-fields

https://docs.sui.io/build/programming-with-objects/ch5-dynamic-fields

6. Write an
IOTA Move Package

54https://docs.sui.io/build/programming-with-objects/ch5-dynamic-fields

https://docs.sui.io/build/programming-with-objects/ch5-dynamic-fields

6. Write an
IOTA Move Package
- Testing

55https://docs.sui.io/build/programming-with-objects/ch5-dynamic-fields

https://docs.sui.io/build/programming-with-objects/ch5-dynamic-fields

Open Research Questions

56

Research Questions

● Shared objects: they need causal total of transaction

○ Unlike most existing DLTs, Sui does NOT impose a total order on many TXs.

○ TXs touching ONLY owned objects are causally ordered:

■ if a transaction T1 produces output objects O1 that are used as input objects in

a transaction T2, a validator must execute T1 before it executes T2.

○ IOTA 2.0 also uses casual order for UTXO TXs. How can we integrate shared objects

in it? Is it needed an additional consensus mechanism (for total ordering)?

● Objects Ledger vs. IOTA's 2.0 Augmented UTXO. What are the Advantages and

Disadvantages?

○ Considering we continue with the UTXO ledger. Will handling objects as UTXOs any

adverse impact on the performance, security, or scalability of the L1?

57https://docs.sui.io/build/programming-with-objects/ch5-dynamic-fields

https://docs.sui.io/build/programming-with-objects/ch5-dynamic-fields

Questions (from you)?

58

Mirko Zichichi

Research Scientist, IOTA Foundation
mirko.zichichi@iota.org

Thank you!

Mirko Zichichi

Research Scientist, IOTA Foundation
mirko.zichichi@iota.org 59

