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Intelligent Transportation Systems Crowd-sensed Data

Sensors→ crowd-sensed data→ next generation Internet services
Intelligent Transportation Systems (ITS)→ services built on vehicles data

Trust the data
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Distributed Ledger Technologies

Distributed Ledger Technologies (DLTs) are used in scenarios where:

1. multiple actors that concur in handling some shared data
2. there is no complete trust among these actors
3. and oǒten they compete to the access/ownership of such data.

This is a typical scenario of a smart transportation service that exploit data sensed
from multiple sources (vehicles).

Can DLTs be efficiently employed in ITS scenarios?
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DLTs Limitations

The main limitations that are commonly attributed to DLTs (e.g. Bitcoin, Ethereum) are:

• lack of scalability and sustainability
• transaction verification rate

Some DLTs have been designed with the intent to support the Internet of Things (IoT)
and to solve some of those limitations.
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Our contribution

• propose a system architecture that exploits DLTs for the support of ITS

• present an experimental evaluation on DLTs

1. use of real data traces to emulate a smart city traffic application

2. performance of the IOTA DLT real-time scenarios
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The Use of DLTs for ITS

• Vehicles equipped with sensors that can
generate data of some interest

• Sensed data can be transmitted through a
network to a DLT

• Data can be stored and manipulated by a
(distributed) storage and computing
platform→ and then referenced in a DLT
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Communication Between Vehicles and DLT Nodes

• Vehicle on board computing unit (or user smartphone) is able to issue requests to
a dedicated DLT node

• Aǒter authentication, these requests are converted to DLT transactions (TXs)
• System Requirements:

1. TXs must be registered in the DLT in a fast way
2. a good level of scalability must be guaranteed
3. the DLT should offer low fees (or no costs at all)
4. TXs must be easily treated as a data-stream, i.e. easy to retrieve.
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IOTA DLT

IOTA is designed to address those requirements and
with the aim to support IoT scenarios.

• The IOTA ledger is structured as a Direct Acyclical Graph
(DAG)→ the Tangle

• Vertices→ TXs , edges→ approvals

To issue a new TX it is necessary to→ approve two previous tips and compute PoW:

1. Tips selection - selecting from the Tangle two random Tip TXs, i.e. that do not have
a successor yet

2. Proof of Work (PoW) - the purpose of PoW is to deter denial of service attacks and
other service abuses, since IOTA is feeless 7 / 16
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IOTA MAM Channels

• Masked Authenticated Messaging (MAM) is a
second layer data communication protocol

• It is used to emit and access an encrypted data
stream over the Tangle

• It takes the form of a linked list of transactions,
chronologically ordered

• Only the owner can publish encrypted messages
• Whoever holds the MAM channel encryption key can decode the messages in the
stream

• Access to new messages may be revoked simply by using a new encryption key
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ITS Real Mobility Traces

Dataset of real mobility traces of buses in Rio de Janeiro (Brasil)

We simulated up to 240 buses that issue (geolocation) data to MAM Channels
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Test configuration

• one hour of trace data for each bus.
• 1 bus→ generates ∼45 message/hour (1 message every 80 sec), a reasonable time
interval to sense data in an urban scenario.

• we recorded the outcome of each message published into the MAM channel:
1. successful or unsuccessful (due to errors or timeouts)
2. latency between the transmission of the message and its insertion into the channel
(i.e. the TX Tips selection and PoW)

• we queried 60 public IOTA full nodes
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Selecting IOTA nodes for Requests

1. Fixed Random: Each bus is assigned to a random public IOTA full node and keeps
it for the whole duration of the test.

2. Dynamic Random: A random node from the pool of random full nodes is selected
every time a message has to be published by a bus.

3. Adaptive RTT: Each bus b holds a list of known_nodes(b), ordered through the
experienced Round Trip Time (RTT) of past interactions.

• for each b
• if waiting(curr_assigned(b), mb

t−1) then
curr_assigned(b) = first_not_waiting(known_nodes(b));

• publish(curr_assigned(b), mb
t );

• if each node ∈ known_nodes(b) is in the process of publishing a b’s previous
message, a new full node is picked randomly from the list of public nodes
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60 bus tests: average latencies, standard deviation and errors
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Boxplots for tests with 60, 120, 240 buses (y-axis in log-scale)
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Results Table

# buses Heuristic Avg Latency Conf. Int. (95%) Errors

60
Fixed Random 72.68 sec [70.43, 74.94] sec 15.37%

Dynamic Random 56.0 sec [54.51, 57.5] sec 18.26%
Adaptive RTT 22.99 sec [22.69, 23.29] sec 0.81%

120
Fixed Random 87.75 sec [85.38, 90.12] sec 29.49%

Dynamic Random 67.6 sec [66.29, 68.9] sec 18.99%
Adaptive RTT 27.35 sec [27.11, 27.58] sec 1.1%

240
Fixed Random 177.62 sec [174.25, 181.0] sec 42.81%

Dynamic Random 128.2 sec [126.28, 130.12] sec 44.85%
Adaptive RTT 73.26 sec [72.68, 73.85] sec 7.55%
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Results Discussion

• through a proper selection of full nodes it is possible to achieve reliable ledger
updates (low errors)

• however, the measured latencies are relevant
• a possible solution =

edge computing system model→ PoW executed by a gateway + Tip selection
accomplished by a full node (complete copy of the Tangle)
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Conclusion

• Architectural solution resorting to DLTs to support ITS, allowing to safely and
securely store sensed data

• Experimental evaluation on a DLT that presents features that are needed for ITS
scenarios→ IOTA

• Measured latencies resulted higher than 20 sec→ high for real-time applications,
reasonable for less time demanding services

• Could be reduced by a targeted selection or by improving ITS and DLT
infrastructures.

• Future Work
• Further experiments with IOTA delegating PoW to gateways
• Employing new DLTs solutions, e.g. sharding
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