Law, Science and Technology MSCA ITN EJD n. 814177

Mirko Zichichi^{1,2}, Stefano Ferretti³, Gabriele D'Angelo²

¹Universidad Politécnica de Madrid ²University of Bologna ³University of Urbino "Carlo Bo" Are Distributed Ledger Technologies Ready for Intelligent Transportation Systems?

1. Introduction

- 2. Architecture Design
- 3. Experimental Evaluation
- 4. Conclusion

Introduction

Intelligent Transportation Systems Crowd-sensed Data

Sensors \rightarrow crowd-sensed data \rightarrow next generation Internet services Intelligent Transportation Systems (ITS) \rightarrow services built on vehicles data Trust the data

Distributed Ledger Technologies

Distributed Ledger Technologies (DLTs) are used in scenarios where:

- 1. multiple actors that concur in handling some shared data
- 2. there is **no complete trust** among these actors
- 3. and often they compete to the access/ownership of such data.

This is a typical scenario of a smart transportation service that exploit data sensed from multiple sources (vehicles). Can DLTs be efficiently employed in ITS scenarios?

DLTs Limitations

The main limitations that are commonly attributed to DLTs (e.g. Bitcoin, Ethereum) are:

- lack of scalability and sustainability
- transaction verification rate

Some DLTs have been designed with the intent to support the **Internet of Things (IoT)** and to solve some of those limitations.

Our contribution

- propose a system architecture that exploits DLTs for the support of ITS
- present an **experimental evaluation** on DLTs
 - 1. use of real data traces to emulate a smart city traffic application
 - 2. performance of the IOTA DLT real-time scenarios

Architecture Design

The Use of DLTs for ITS Communication with DLT Nodes IOTA

The Use of DLTs for ITS

- Vehicles equipped with sensors that can generate data of some interest
- Sensed data can be transmitted through a network to a DLT
- Data can be stored and manipulated by a (distributed) storage and computing platform → and then referenced in a DLT

Communication Between Vehicles and DLT Nodes

- Vehicle on board computing unit (or user smartphone) is able to issue requests to a dedicated DLT node
- After authentication, these requests are converted to DLT transactions (TXs)
- System Requirements:
 - 1. TXs must be registered in the DLT in a **fast way**
 - 2. a good level of **scalability** must be guaranteed
 - 3. the DLT should offer low fees (or no costs at all)
 - 4. TXs must be easily treated as a data-stream, i.e. easy to retrieve.

IOTA DLT

IOTA is designed to address those requirements and with the aim to support **IoT scenarios**.

- The IOTA ledger is structured as a Direct Acyclical Graph (DAG) → the Tangle
- + Vertices \rightarrow TXs , edges \rightarrow approvals

To issue a new TX it is necessary to \rightarrow approve two previous tips and compute PoW:

- 1. Tips selection selecting from the Tangle two random Tip TXs, i.e. that do not have a successor yet
- Proof of Work (PoW) the purpose of PoW is to deter denial of service attacks and other service abuses, since IOTA is feeless 7/16

IOTA MAM Channels

- Masked Authenticated Messaging (MAM) is a second layer data communication protocol
- It is used to emit and access an **encrypted data stream** over the Tangle
- It takes the form of a **linked list** of transactions, chronologically ordered

- Only the **owner** can publish encrypted messages
- Whoever holds the **MAM channel encryption key** can decode the messages in the stream
- Access to new messages may be **revoked** simply by using a new encryption key

Experimental Evaluation

Trace-driven Vehicles Simulation Results Discussion

ITS Real Mobility Traces

Dataset of real mobility traces of buses in Rio de Janeiro (Brasil)

We simulated up to 240 buses that issue (geolocation) data to MAM Channels

Test configuration

- one hour of trace data for each bus.
- 1 bus \rightarrow generates \sim 45 message/hour (1 message every 80 sec), a reasonable time interval to sense data in an urban scenario.
- we recorded the outcome of each message published into the MAM channel:
 - 1. successful or unsuccessful (due to errors or timeouts)
 - 2. **latency** between the transmission of the message and its insertion into the channel (i.e. the TX **Tips selection** and **PoW**)
- we queried 60 public IOTA full nodes

Selecting IOTA nodes for Requests

- 1. Fixed Random: Each bus is assigned to a random public IOTA full node and keeps it for the whole duration of the test.
- 2. Dynamic Random: A random node from the pool of random full nodes is selected every time a message has to be published by a bus.
- 3. Adaptive RTT: Each bus *b* holds a list of *known_nodes(b)*, ordered through the experienced Round Trip Time (RTT) of past interactions.
 - \cdot for each b
 - if waiting(curr_assigned(b), m^b_{t-1}) then curr_assigned(b) = first_not_waiting(known_nodes(b));
 - publish(*curr_assigned(b)*, m_t^b);
 - if each node ∈ known_nodes(b) is in the process of publishing a b's previous message, a new full node is picked randomly from the list of public nodes

Trace-driven Vehicles Simulation Results Discussion

60 bus tests: average latencies, standard deviation and errors

Boxplots for tests with 60, 120, 240 buses (y-axis in log-scale)

Results Table

# buses	Heuristic	Avg Latency	Conf. Int. (95%)	Errors
60	Fixed Random	72.68 sec	[70.43, 74.94] sec	15.37%
	Dynamic Random	56.0 sec	[54.51, 57.5] sec	18.26%
	Adaptive RTT	22.99 sec	[22.69, 23.29] sec	0.81%
120	Fixed Random	87.75 sec	[85.38, 90.12] sec	29.49%
	Dynamic Random	67.6 sec	[66.29, 68.9] sec	18.99%
	Adaptive RTT	27.35 sec	[27.11, 27.58] sec	1.1%
240	Fixed Random	177.62 sec	[174.25, 181.0] sec	42.81%
	Dynamic Random	128.2 sec	[126.28, 130.12] sec	44.85%
	Adaptive RTT	73.26 sec	[72.68, 73.85] sec	7.55%

Results Discussion

- through a proper selection of full nodes it is possible to achieve reliable ledger updates (low errors)
- however, the measured latencies are relevant
- \cdot a possible solution =
 - edge computing system model \rightarrow PoW executed by a gateway + Tip selection accomplished by a full node (complete copy of the Tangle)

Conclusion

Conclusion

- Architectural solution **resorting to DLTs to support ITS**, allowing to safely and securely store sensed data
- Experimental evaluation on a DLT that presents features that are needed for ITS scenarios \rightarrow IOTA
- Measured latencies resulted higher than 20 sec \rightarrow high for real-time applications, reasonable for less time demanding services
- Could be reduced by a **targeted selection** or by improving ITS and DLT **infrastructures**.
- · Future Work
 - Further experiments with IOTA delegating PoW to gateways
 - Employing new DLTs solutions, e.g. sharding