
This is the �nal peer-reviewed accepted manuscript of: 

On  the  decentraliza�on  of  Mobile  Crowdsensing  in  Distributed  Ledgers:  an

architectural vision

Conference  Proceedings:  2024  IEEE  21th  Annual  Consumer  Communica ons  &

Networking Conference (CCNC 2024), 6 – 9 January 2024, Las Vegas, Nevada, USA.

Author:  Lorenzo  Gigli;  Federico  Montori;  Mirko  Zichichi;  Luca  Bedogni;  Stefano

Ferre9; Marco Di Felice

Publisher: IEEE

The �nal published version is available online at:

Rights / License:

© 2023 IEEE. Personal use of this material is permiAed. Permission from IEEE must be obtained for

all other uses, in any current or future media, including reprin ng/republishing this material for

adver sing or promo onal purposes, crea ng new collec ve works, for resale or redistribu on to

servers or lists, or reuse of any copyrighted component of this work in other works. The terms and

condi ons for the reuse of this version of the manuscript are speci�ed in the publishing policy. For

all terms of use and more informa on see the publisher's website:

hAps://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/author_version_faq.pdf

This item was downloaded from the author personal website (h ps://mirkozichichi.me)

When ci�ng, please refer to the published version.

https://mirkozichichi.me/
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/author_version_faq.pdf


On the decentralization of Mobile Crowdsensing in
Distributed Ledgers: an architectural vision

Lorenzo Gigli⇤, Federico Montori⇤, Mirko Zichichi§, Luca Bedogni†, Stefano Ferretti‡⇤, Marco Di Felice⇤
⇤

Department of Computer Science and Engineering, University of Bologna, Italy

†
Faculty of Maths and Physics, University of Modena and Reggio Emilia, Italy

‡
Department of Pure and Applied Sciences, University of Urbino, Italy

§
IOTA Foundation, Berlin, Germany

Correspondent author’s Email: lorenzo.gigli@unibo.it

Abstract—Mobile Crowdsensing (MCS) is a paradigm where

a crowdsourcer recruits a set of workers through a campaign

to collect data using sensors in their mobile device. This process

greatly reduces the costs of data collection processes; however,

most of the historically proposed systems are centralized. Since

this makes the MCS platform a single point of failure, there is an

increasing interest in decentralized blockchain-based solutions;

regardless, most of the current proposals have a vertical focus

and do not account for the heterogeneity of MCS. We propose

a decentralized high-level architecture for MCS, based on Dis-

tributed Ledger Technology (DLT), that is adaptable to most

MCS deployments. We then implement our architecture using

the IOTA protocols and evaluate its performance over a real

deployment in terms of scalability, showing its advantages over

classic blockchains for MCS data.

Index Terms—Mobile Crowdsensing, DLT, blockchain, IoT

I. INTRODUCTION

Mobile Crowdsensing (MCS) [1] is a data collection
paradigm that leverages the power of the crowd to assess and
describe phenomena of common interest in the context of the
Internet of Things (IoT). In MCS, a Crowdsourcer, an entity
interested in certain data, publishes a data collection campaign
where end users, called Workers, can participate by collecting
data through their mobile devices. In this scenario, Workers are
rewarded by the Crowdsourcer via monetary compensation or
through digital assets, e.g. in the form of a game. Regardless
of how it is practised, MCS has revolutionized data collection
processes, as there is no need to either deploy field sensors or
hire a dedicated group of experts to conduct such sensing tasks.
This greatly reduces the costs of data collection campaigns,
especially when occasional.

Research on MCS has been significantly active over recent
years, as such a paradigm brings in several challenges that
need to be solved, such as privacy, data quality, coverage, and
incentivization [2]. Moreover, traditional MCS deployments
rely on a centralized architecture: data is collected onto a
central MCS platform, where most of the computation occurs.
While efficient in data processing, this centralization implies
significant risks. Workers must trust a single entity, creating a
single point of failure that, if compromised, can lead to system-
wide vulnerabilities, data integrity issues, and potential misuse
of sensitive information [3]. Additionally, centralized systems
can face scalability challenges, as increasing data volumes

and user participation may lead to processing bottlenecks and
increased operational costs.

In recent years, Distributed Ledger Technology (DLT) have
arisen as a potential solution for decentralized and trustless
architectures. DLT use a Peer-to-Peer (P2P) architecture, in
which each of the participating nodes retains a copy of all the
transactions that occurred in the system. A transaction denotes
a change in the status quo and is validated across all peers
through a consensus system. A blockchain is an example of
a DLT, the first of its kind introduced with Bitcoin, where
transactions are stored in a chain of blocks. With the advent
of Ethereum, a blockchain may be capable of running smart

contracts, which can be seen as programs that are deployed on-
chain and can be invoked by peers, generally for a fee, through
the Ethereum Virtual Machine (EVM). The interaction with
smart contracts is handled through decentralized applications
(Dapps), the main enabler for decentralized architectures.

Adopting a DLT for an architecture historically considered
centralized does not come for free. It brings about a number
of challenges, as well as a dramatic change in the architectural
setup. There have been proposals in literature for applying
existing DLT in data collection scenarios, most of them using
ancillary distributed services to store big data. However, very
few of them are focused on MCS, and the vast majority
only target a vertical aspect of a particular MCS deployment.
They do not consider the inherent heterogeneity of MCS
ecosystems, making such solutions hardly applicable to a
wide range of use cases.

In this paper, we propose a high-level decentralized archi-
tecture for MCS that uses DLT. Our proposed architecture
is generic enough to accommodate different MCS paradigms
and does not lean toward any specific technology, letting the
developers choose the right tools. At the same time, we define
the architecture components by providing examples of real-
world technologies to show that they can be implemented
using existing tools. We also implement the architecture on
a real ledger using IOTA, a DLT whose design is especially
suitable for IoT scenarios. In particular, we make the following
three contributions:

• We define the architectural components of a fully decen-
tralized MCS system through DLT by outlining the essen-



tial operations that take place throughout a data collection
campaign, abstracting from vertical deployments.

• We implement our proposed architecture by using IOTA
and describe how the components of our architecture are
to be placed in a system that runs over the IOTA Tangle.

• We evaluate IOTA’s performance and scalability on a
large-scale deployment by using a real IOTA node and
some MCS devices that upload data concurrently.

The remainder of the paper is organized as follows: Sec-
tion II outlines recent works, Section III details our archi-
tectural proposal, Section IV shows our implementation using
IOTA, Section V discusses the evaluation of our proposal, and,
finally, Section VI concludes the paper.

II. RELATED WORKS

In this section, we review the state of the art for the different
areas pertaining to this work, specifically MCS in Section II-A
and blockchain in Section II-B.

A. Mobile Crowdsensing

MCS has been actively studied in recent years due to
its ability to provide sensory data without needing specific
infrastructure. There have been many different architectures
to realize such a vision, most of which employ a centralized
approach [1].

MCS present several challenges, which we can summarize
as (i) Privacy, as personal information of workers sharing
their data must be protected; (ii) Reward, to provide adequate
compensation for the workers’ services; (iii) Data quality,
since data obtained through MCS is usually noisy.

Regarding privacy, the main issue to consider is protect-
ing users’ traces and routines, as subsequent geolocalized
measurements can easily uncover potential users’ habits and
points of interest [4]. To this end, there have been several
proposals in literature to protect the workers’ anonymity [5]
[6]. More recently, proposals have also focused on the privacy
preservation of users by considering novel protocols through
which workers can communicate without disclosing too much
information [7] by employing correlation metrics between the
workers and the central server.

Considering the reward, again, the challenge may have mul-
tiple different solutions and possibilities. It is also important
to note that the reward is tied to privacy: to reward a user, the
platform must know who provided data so that it is possible to
later exchange the user’s work for some form of compensation
[1]. Determining the right amount of reward to provide to a
user depends on several factors that are outside the scope of
this work, and we refer to the work presented in [8]. Closer to
this work is instead the possibility to provide a reward to the
users while protecting their personal information, which is the
scope of [9], in which the authors propose a novel feedback
based protocol that allows the users to select the desired degree
of information disclosed.

B. IoT and MCS with blockchain

In recent years, many attempts have been made to bind the
concepts of MCS and distributed ledgers [3]. Early works such
as [10] introduce the usage of a blockchain in MCS scenarios;
however, the blockchain itself is used as a black box for
data exchange for non-repudiation and non-tampering, without
full architectural integration. These papers focus mostly on
deep mathematical problems not very much influenced by
centralized or decentralized architectures. More recent works
propose their own DLT to adapt to the MCS paradigm. For
instance, the work in [11] proposes BlockSense, a blockchain
for MCS that is built on top of a novel consensus algorithm
called Proof-of-Data (PoD), which allows miners to check for
data quality instead of performing useless puzzles. To achieve
this, authors use zk-SNARKS and Homomorphic Encryption
on top of each data point. Another work [12] proposes
a similar model based on Delegated Proof of Reputation
(DPoR) as the consensus mechanism and multiple contracts
to constrain the behaviour of the actors. The aspect of fair
rewarding is considered in ABCrowd [13], where authors bring
the well-known reverse auction paradigm into a decentralized
ecosystem as an incentive. They also design an MCS system
to counter misbehaving workers over Ethereum [14] by letting
actors interact with each other through smart contracts. This
solution is, however, hardly sustainable nowadays because of
the high transaction costs of Ethereum.

Most of the cited works are focused vertically on a single
MCS aspect, and they often do not consider existing DLT.
Rather, they assume a generic blockchain without a deep
architectural discussion or an implementation that justifies its
scalability in the real world. Pioneering work for IoT has been
proposed in [15], where a global IoT market is envisioned, and
owners of IoT devices are recruited through oracles on top of
their reputation to provide sensory data. A similar concept can
be applied to MCS; however, MCS differs from pure IoT in
many aspects.

Within a broader scope, works exist centred on leveraging
sensors sensed by sensors and stored in decentralized systems,
addressing overarching framework issues to establish data
marketplaces [16]. These endeavours emphasize the creation of
data marketplaces without delving into specific crowdsensing
aspects [17].

III. SYSTEM ARCHITECTURE

This paper aims to present an architectural solution for
deploying MCS systems in a fully decentralized scenario
powered by distributed ledgers. In this section, we present
a high-level view of such an architecture, outlining the main
actors as well as the necessary components (see Figure 1). The
goal here is to first abstract from the technologies and focus
on how the different parties are supposed to interact.

A. Actors

First, it is necessary to specify the actors involved in
MCS scenarios. Specifically, MCS systems are powered by
an exchange of data and money between two parties: the



Fig. 1. Our proposed decentralized MCS architecture.

Crowdsourcers, who need data, and a crowd of Workers,
who possess the capabilities to collect such data. In MCS,
a Crowdsourcer publishes a data collection campaign, which
is advertised through an MCS platform so that any Worker
can retrieve information on how to participate. A campaign
generally specifies a handful of metadata, such as what kind of
data is needed (e.g. accelerometer, gyroscope, pictures, etc.),
an area within which the data is actually of interest, a validity
over time, and a reward for a set of data points. By publishing
the campaign, the Crowdsourcer also stakes a certain amount
of money – the campaign budget – to be paid to Workers.
Workers then may sign up for the campaign and collect sensor
data through their devices (a smartphone, a wearable, or any
other portable sensor). The Worker then upload data to the
MCS platform in return for a reward.

In many cases, Workers are considered untrustworthy: they
may upload fake data to obtain more money or simply be
ingenuous users who may make mistakes in the data collection
process. For this reason, many MCS scenarios adopt data
quality countermeasures [18]. In our case, we rely on a third
type of actor: the Verifier. Verifiers are other MCS users
committed to checking data uploads for their integrity and
validity. How this process is carried out is out of the scope
of the paper, as it may change depending on the nature of the
campaign (a decentralized solution for this process is briefly
explained in section III-D). In this paper, we assume they have
a way to endorse or reject a data point, so the rewarding
mechanism occurs only after the data has been endorsed a
certain number of times.

B. Components

As specified earlier, this section aims to outline a high-
level and technology-agnostic architecture. That being said,
the feasibility of such a system is unavoidably tied to a certain
number of components that are necessary for its deployment.
First of all, the main ingredient for a fully decentralized system

is a Distributed Ledger Technology (DLT), which is natively
tamper-proof and assures non-repudiation. We intentionally do
not constrain this definition to a blockchain, as, despite being
the most common example of DLT, it is not the only one
(see the IOTA Tangle, Section IV-A). Smart contracts are a
necessary component of our architecture; thus, we assume that
the chosen DLT is also enabled for running smart contracts.
Finally, our architecture makes use of a Distributed File Sys-

tem (DFS) for storing MCS data. In fact, in most cases, MCS
data may be too large or simply too expensive for being stored
directly on a smart contract. A typical approach in literature
consists of making use of a DFS, such as InterPlanetary File
System (IPFS) [19] or Swarm [20], for the actual storage and
then uploading on the smart contract only the reference/hash
of the data [21]. This is much more sustainable as, in a DFS,
not all peer nodes need to keep the full database in memory
as in DLT, only a part of it.

C. Interactions

Once specified the actors that take part in the system and
the necessary components for its deployment, we outline the
macro actions that each actor must carry out within a full
data collection process. With respect to the steps numbered in
Figure 1, we describe them below in detail.

1) Generate new campaign: The Crowdsourcer must create
a new smart contract uniquely representative of a new cam-
paign. In doing so, the smart contract needs a definite set of
functions that must adhere to some kind of standards so that
Workers can interact with different campaigns using the same
schema. Much like standards established for fungible and non-
fungible tokens (ERC-20 and ERC-721), we could imagine
a similar standard for MCS campaigns that allow Workers
to upload data and obtain the metadata of the campaign and
allows the Crowdsourcer to stake a certain amount of tokens
which will be used as a reward once the data is verified. This
operation may cause the Crowdsourcer to additionally spend
gas fees.

2) Register new campaign: When the campaign is de-
ployed, it needs to be reachable through a “campaign hub”,
which is defined as a root contract, i.e., a smart contract that
works as an indexer and maintains a list of active campaigns.
In a global IoT market, we could envision multiple root
contracts to be deployed on-chain, each of them requiring a
fee for indexing a campaign.

3) Campaign lookup: Workers can query a root contract
that they know to look up the address of active campaigns.
Once the address is known, they can also query each of the
campaign contracts they are interested in for their metadata
and discover if they are eligible to participate (e.g. if they
possess the right sensors, if they are in the zone of interest,
etc.).

4) Store collected data: Once a Worker decides to partici-
pate in a campaign, it starts collecting data on their personal
device. When a certain number of data points is collected –
this is commonly a parameter of the campaign – the Worker



uploads the data on a DFS and gets back its hash and index
as proof of the upload.

5) Store data hash: The Worker finally uploads the hash
of its collected data onto the campaign contract. In the case
of EVM-like blockchains, this is not a view/pure transaction;
thus, it may cause the worker to invest a small gas fee to
ensure the transaction. This depends on the DLT technology;
however, this investment may discourage Workers from up-
loading fake/inaccurate data. It is also worth mentioning that
because the hashing function is known, a Worker may even
calculate the hash locally and upload it before the actual data
upload is finished on the DFS. This is because uploading data
on DFS is generally time-consuming (cfr. Section V), while
it may also be convenient for a Worker to secure a reward
beforehand.

6) Lookup for data record: Here is where the Verifiers
come into play. A Verifier opportunistically discovers ongoing
campaigns, much like Workers do in step 3 (omitted here
for Verfiers for conciseness) and, subsequently, for unverified
hashes. A Verifier must be eligible to verify the data of such
a campaign in order to proceed. Verifiers eligibility can be
assessed in various ways, such as expertise or location. This
aspect is out of the scope of the paper and largely discussed
in literature [17], [18].

7) Obtain data and verify: Once the Verifier obtains the
hash to verify, it queries the DFS for the actual piece of data.

8) Endorse or reject hash: The Verifier then checks the
uploaded data and posts a verdict (endorse or reject) on the
campaign contract. This may also involve a fee to be paid in
EVM-like blockchains, which makes sense, considering that
the Verifier will eventually be paid for this operation. Putting
some rewards at stake should encourage the Verifier to perform
this task diligently.

9) Close the campaign and pay off: When the data col-
lection is complete, the Crowdsourcer closes the campaign.
This may occur because the campaign has expired or because
the number of data points collected has reached a threshold.
Regardless, once this condition is met, the Crowdsourcer must
pay off all the participants using the tokens staked at the
beginning of the process. A simple yet effective way to do
it would be to pay a fixed amount to Workers for each
endorsed hash and a second fixed amount to Verifiers for each
vote confirmed by the community. For instance, if a Verifier
rejected a hash that was instead endorsed by the majority of
other Verifiers, then such Verifier will not be rewarded and
will lose the money put at stake, if any. Several other reward
systems in the literature may differently reward Workers with
budget constraints, depending on how valuable is indeed the
collected data. Nonetheless, this is out of the scope of the
paper, and we redirect the interested reader to [22].

D. Extensions

The architecture shown is intentionally generic to encom-
pass the majority of decentralized MCS deployments. This
admittedly leaves apart some important aspects that may be

felt as limitations of the proposed architecture; however, they
can all be addressed through well-known solutions.

First, the architecture, as is, suits a pull-based MCS setup,
where Workers can freely join any campaign and contribute
as much and as often as they want. Indeed, many MCS
deployments in literature imply a push-based paradigm, where
the MCS platform actively recruits Workers by deciding who
is committed to performing which task, based on costs, ca-
pabilities, context, etc. This requires our architecture to add
a recruitment phase by keeping track of all enrolled Workers
and implementing a selection function within the contract. The
same recruitment scheme may be used to assign Verifiers to
hashes to validate because letting them choose what to validate
may easily lead to collusion attacks. These operations can
be decentralized using a Decentralized Oracle solution. For
instance, the Chainlink protocol [23] enables the creation of
a decentralized oracle network where each node, i.e., a single
Validator and/or Worker, can perform the data uploads or the
validation task if they are appointed to. If the majority of the
nodes in the Oracle network vote in favor, the data can be
considered valid. The interactions with the contracts, however,
remain almost the same. This aspect may be traced back to
other architectures, such as our recent proposal [15].

Another issue is that once data is on a DFS, and the hash
of it is public, every peer can read such data. Additionally,
ensuring data ownership to a buyer may seem challenging once
the transaction is performed. However, several works deal with
data encryption on DFSs as well as using NFTs to grant data
ownership [24]. One last aspect to take into account is privacy,
which is a crucial matter in MCS, as data points are almost
always geolocalized. Actually, some of the proposed privacy
schemes in literature do not necessarily imply a trusted party,
and they can be almost equally applied to our decentralized
architecture [7].

IV. SYSTEM IMPLEMENTATION

In this section, we concretely envision how our proposed
decentralized MCS architecture would be implemented using
one of the latest technologies introduced for decentralized IoT
environments: IOTA.

A. IOTA: Background

IOTA [25] is a DLT that runs on the Tangle, a data structure
replicated across a network of nodes. It forms a directed
acyclic graph of blocks (a block-DAG), where each newer
block is attached to multiple older ones. In IOTA’s Tangle,
every participant who wants to issue a block containing a
transaction is required to validate two previous blocks. This
validation process replaces the concept of transaction fees, as
each participant contributes to the security and functionality
of the network by validating other transactions. When a user
wants to issue a new block, it must perform a small Proof-
of-Work (PoW) computation. The PoW is a cryptographic
puzzle that requires a certain amount of computational effort
to solve. However, the difficulty level is intentionally kept
relatively low compared to traditional blockchain networks like



Fig. 2. Our proposed architecture implemented using IOTA and IPFS.

Bitcoin or Ethereum. This design choice makes it feasible for
a wide range of devices, including IoT devices with limited
computational power, to participate in the network and issue
transactions.

Blocks usually contain core payloads that are processed by
all nodes. The payload concept generally offers a flexible way
to combine and encapsulate information in a block on the
IOTA Tangle. The most flexible way to extend an existing
object is by adding arbitrary data. The Tagged Data Payload
provides a way to do just that. This type of payload can be
used by automated devices or users to share messages in the
Tangle in a feeless way.

Additionally, the IOTA environment provides the capability
to execute smart contracts thanks to the IOTA Smart Contracts
(ISC) protocol. Considering the IOTA Tangle as a Layer 1
(L1) network, the ISC protocol builds on a Layer 2 (L2)
network of nodes executing an EVM-compatible blockchain.
The ISC protocol is an L2 framework that brings quasi-Turing
complete smart contracts to the IOTA technology stack. ISC
is a versatile, multi-chain environment that can run numerous
parallel L2 Blockchains on top of the L1 IOTA ledger. Each
chain possesses its own independent ledger state, using an
account-based model anchored to a specific IOTA unspent
transaction Output (UTXO) ledger account on L1. Every chain
can host multiple smart contracts that are fully composable
via synchronous calls within the chain. At the same time,
cross-chain transactions are enabled through an anchoring
mechanism on L1, promoting asynchronous composability.
This design lets smart contracts interact trustlessly across
different IOTA Smart Contract chains.

B. Our proposal with IOTA

In Figure 2, we show the schematic deployment of our
architectural proposal in an IOTA environment. The basic

components are the IOTA Tangle, which works as an L1
ledger, and an L2 ISC EVM-like blockchain, in which our two
smart contracts – the campaign contract and the root contract
– are deployed. The DFS used here is IPFS, one of the most
well-known DFS. IPFS uses a content-addressing manner to
identify pieces of data, which means that the hash of the data
points collected by a Worker is the only information needed to
retrieve such data points. The Crowdsourcer replicates exactly
steps 1 and 2 of Section III-C, only interacting with the L2
chain. The Croudsourcer would only stake the tokens that
serve as payments for Workers and Verifiers and, if present, a
small fee for registering the campaign in the root contract. Step
3, taken by the Worker, is straightforward, while a separate dis-
cussion must be made for steps 4 and 5. Differently from a full
EVM-compatible deployment, here, the IOTA Tangle serves as
the storage where the data is collected. Now, depending on the
nature of the data for the campaign, we can take two separate
paths. If the data is relatively lightweight (e.g. a JSON object
containing sensor readings and a handful of metadata), then
we can directly encapsulate such data within a single IOTA
block and save it on the L1 ledger. If, instead, the data is larger
than 32KB (multimedia, pictures, videos, etc.), then we adopt
the classic procedure of saving it onto IPFS and writing only
its hash on the IOTA block, encapsulated in a JSON object.
In both cases, data integrity is maintained by the IPFS URI
or by the block ID (that corresponds to the hash digest of the
block payload, i.e., the data or the IPFS URI). In any case,
the Worker here submits to the campaign contract on L2 the
block ID that points to the block in the L1 ledger. The Verifier
then takes the same steps as in Section III-C, checking first the
block on L1 and, if needed, the data on IPFS. The block ID on
the campaign contract can be marked as endorsed or rejected.
After a number of votes, the approved blocks are presented
to the Crowdsourcer, who is then committed to closing the



campaign and releasing the tokens. The Crowdsourcer can then
use the data within (or pointed by) the blocks in L1.

V. EVALUATION

In this section, our primary objective was to assess the
viability of our proposed architecture, leveraging IOTA and, in
some instances, IPFS for data storage. We aimed to determine
whether the performance metrics met the demands typical of
a crowdsensing environment. The results presented will shed
light on the practicality of our approach and its potential fit
in real-world scenarios.

A. Experimental Setup

This section provides a detailed overview of the infras-
tructure and procedures we adopted to assess our proposed
architecture’s performance and scalability.

For the experiments, we set up an IOTA Hornet full node
v2.0.0-rc.61 configured with 10 workers and deployed on a
cloud server. This server was equipped with an Intel Xeon
Processor E7330 @ 2.40GHz, with 64GB RAM and an SSD.
This configuration ensured the node was adequately robust to
manage the incoming data and execute the necessary PoW to
insert new transactions on the IOTA Tangle. We developed a
multi-threaded application to simulate the behavior of multiple
devices transmitting crowdsensing data. This application was
executed on a machine powered by an Intel Xeon Gold 6238R
Processor @ 2.20 GHz, with 256GB RAM and an SSD. Given
that this machine has 56 logical CPUs, it was suitable for
simulating up to 50 devices concurrently, offering a realistic
representation of a dense MCS environment.

Our experimental methodology was designed to evaluate
two primary strategies for data storage. The first involved
directly storing the entire payload on IOTA. In our case, we
simulated a campaign where workers were asked to measure
the temperature and humidity of the environment and upload
a JSON object with such information. The second strategy
involved storing the payload on IPFS and then recording only
the CID on IOTA. In our case, we simulated a campaign
where the workers were asked to take a picture. Each of these
strategies was further differentiated based on the location of
the execution of the PoW: either locally by the device or
remotely by the IOTA node. The experiments were designed to
introduce the workload incrementally. We began with a single
device dispatching a new measurement every 10 seconds.
Gradually, we scaled the setup, introducing 5 devices, then
10, followed by 25, and finally reaching our peak load with 50
devices. To ensure the reliability of our findings, we repeated
each phase five times and then averaged the results.

In these experiments, we primarily focused on the time
metric, measuring the duration from the initiation of the data
send request to its successful storage on the system. In the
following section, we will present the results derived from
these experiments, providing insights into the performance of
our proposed architecture.

1https://github.com/iotaledger/hornet

Fig. 3. Time analysis for data transmission to IOTA with local vs. remote
PoW by device count.

Fig. 4. Time analysis for payload storage on IPFS and CID transmission to
IOTA with local vs. remote PoW by device count.

B. Results

Figure 3 shows the time performance of our system using
the first strategy, where the full payload of the measurement
performed by each Worker is stored on the Tangle. The bar
chart shows two different cases: blue bars denote a PoW
executed on the Worker’s device, while yellow bars denote
a PoW delegated to the IOTA full node. We can see how time
increases as the number of blocks to be added to the Tangle
increases as well. This operation is executed by the IOTA node
almost sequentially – the node has been configured with 10
worker threads. We also note how performing local PoW saves
time, as the PoW tasks are not centralized on the IOTA node,
and we can assume that the time taken for the actual PoW
is close to a constant. We also observe that the time taken
for local PoW is greater than for remote PoW for only one
device. This is also expected, as the computational power of
one Worker is less than that of the IOTA node. However, the
trend rapidly inverts as the number of devices increases, and
the IOTA node needs to perform multiple tasks.

Figure 4 shows the plot when adopting the second strategy,



which involves storing the full payload on IPFS and only the
CID in IOTA. This plot reveals a very different trend, where
the number of devices minimally influences the overall time
taken. This is primarily because the upload on IPFS consumes
a significant portion of the operation time. The difference
between the time taken for calculating the PoW and the upload
on IOTA versus the upload on IPFS is evident in the same
figure. It is noticeable how the second is an order of magnitude
greater than the first, even if it seems not affected by the
number of devices, at least not at this scale.

For clarity in visualization, we plotted the confidence in-
terval only for IPFS. The confidence interval for IOTA was
negligible, and plotting both together resulted in a confusing
representation on the chart. These experiments highlight the
scalability of IOTA for our use case. For instance, even
when 50 devices upload simultaneously using the same IOTA
node, the process completes in less than 5 seconds. However,
it’s important to highlight that in real-world scenarios, the
likelihood of 50 or more of them synchronously uploading
data at the same time is low.

Moreover, these findings provide insights into sizing an
IOTA node’s deployment to handle specific loads. For in-
stance, a crowdsourcer aiming to support its campaign can
decide to deploy dedicated IOTA nodes, ensuring a controlled
environment tailored to their specific needs. On the other
hand, the crowdsourcer can also choose to leverage already
established public nodes within the IOTA network. While
this might introduce variability in response times and load,
it can be a cost-effective strategy, reducing the need for initial
infrastructure setup and maintenance.

VI. CONCLUSION

In this paper, we proposed an architectural solution for
MCS in a decentralized fashion to overcome the problem
of centralization. Our solution is based on DLT and DFS,
and it is generic enough to encompass the vast majority of
existing MCS deployments. We then implemented a system
that follows the guidelines of our architecture using IOTA as
a DLT and IPFS as a DFS in order to prove its superiority
for use cases that are common in MCS. In the future, we aim
to design a standard for smart contracts to comprehensively
describe heterogeneous MCS campaigns.

REFERENCES

[1] A. Capponi, C. Fiandrino, B. Kantarci, L. Foschini, D. Kliazovich, and
P. Bouvry, “A survey on mobile crowdsensing systems: Challenges,
solutions, and opportunities,” IEEE communications surveys & tutorials,
vol. 21, no. 3, pp. 2419–2465, 2019.

[2] F. Montori, P. P. Jayaraman, A. Yavari, A. Hassani, and D. Georgakopou-
los, “The curse of sensing: Survey of techniques and challenges to cope
with sparse and dense data in mobile crowd sensing for internet of
things,” Pervasive and Mobile Computing, vol. 49, pp. 111–125, 2018.

[3] Z. Chen, C. Fiandrino, and B. Kantarci, “On blockchain integration into
mobile crowdsensing via smart embedded devices: A comprehensive
survey,” Journal of Systems Architecture, vol. 115, p. 102011, 2021.

[4] L. Bedogni and M. Levorato, “Rising user privacy against predictive
context awareness through adversarial information injection,” in 2018

IEEE Global Communications Conference (GLOBECOM), pp. 1–6,
2018.

[5] Y. Cheng, J. Ma, and Z. Liu, “A lightweight privacy-preserving partici-
pant selection scheme for mobile crowdsensing,” in 2022 IEEE Wireless

Communications and Networking Conference (WCNC), pp. 1509–1514,
2022.

[6] J. W. Kim, K. Edemacu, and B. Jang, “Privacy-preserving mechanisms
for location privacy in mobile crowdsensing: A survey,” Journal of

Network and Computer Applications, vol. 200, p. 103315, 2022.
[7] F. Montori and L. Bedogni, “Privacy preservation for spatio-temporal

data in mobile crowdsensing scenarios,” Pervasive and Mobile Comput-

ing, vol. 90, p. 101755, 2023.
[8] X. Xu, J. Cheng, J. Liu, Y. Yuan, H. Li, and V. S. Sheng, “A Survey of

Blockchain-Based Crowd Sensing Incentive Mechanism,” in Advances

in Artificial Intelligence and Security (X. Sun, X. Zhang, Z. Xia,
and E. Bertino, eds.), (Cham), pp. 245–259, Springer International
Publishing, 2022.

[9] L. Bedogni and F. Montori, “Joint privacy and data quality aware reward
in opportunistic Mobile Crowdsensing systems,” Journal of Network and

Computer Applications, p. 103634, 2023.
[10] S. Zou, J. Xi, H. Wang, and G. Xu, “Crowdblps: A blockchain-

based location-privacy-preserving mobile crowdsensing system,” IEEE

transactions on industrial informatics, vol. 16, no. 6, pp. 4206–4218,
2019.

[11] J. Huang, L. Kong, L. Cheng, H.-N. Dai, M. Qiu, G. Chen, X. Liu,
and G. Huang, “Blocksense: Towards trustworthy mobile crowdsensing
via proof-of-data blockchain,” IEEE Transactions on Mobile Computing,
2022.

[12] J. An, J. Cheng, X. Gui, W. Zhang, D. Liang, R. Gui, L. Jiang,
and D. Liao, “A lightweight blockchain-based model for data quality
assessment in crowdsensing,” IEEE Transactions on Computational

Social Systems, vol. 7, no. 1, pp. 84–97, 2020.
[13] M. Kadadha, R. Mizouni, S. Singh, H. Otrok, and A. Ouali, “Abcrowd

an auction mechanism on blockchain for spatial crowdsourcing,” IEEE

Access, vol. 8, pp. 12745–12757, 2020.
[14] M. Kadadha, H. Otrok, R. Mizouni, S. Singh, and A. Ouali, “Sensechain:

A blockchain-based crowdsensing framework for multiple requesters
and multiple workers,” Future Generation Computer Systems, vol. 105,
pp. 650–664, 2020.

[15] L. Gigli, I. Zyrianoff, F. Montori, C. Aguzzi, L. Roffia, and M. Di Felice,
“A decentralized oracle architecture for a blockchain-based iot global
market,” IEEE Communications Magazine, vol. 61, no. 8, pp. 86–92,
2023.

[16] M. Zichichi, S. Ferretti, and G. D’Angelo, “A framework based on
distributed ledger technologies for data management and services in
intelligent transportation systems,” IEEE Access, 2020.

[17] M. Bonini, M. Zichichi, G. D’Angelo, and S. Ferretti, “Proof of location
through a blockchain agnostic smart contract language,” in Proc. of the

43rd IEEE International Conference on Distributed Computing Systems

(ICDCS 2023), IEEE, July 2023.
[18] F. Restuccia, N. Ghosh, S. Bhattacharjee, S. K. Das, and T. Melodia,

“Quality of information in mobile crowdsensing: Survey and research
challenges,” ACM Transactions on Sensor Networks (TOSN), vol. 13,
no. 4, pp. 1–43, 2017.

[19] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv

preprint arXiv:1407.3561, 2014.
[20] S. team, “Swarm: storage and communication infrastructure for a self-

sovereign digital society.” https://www.ethswarm.org/swarm-whitepaper.
pdf, 2021. Version 1.0 of June 13, 2021.

[21] H. Huang, J. Lin, B. Zheng, Z. Zheng, and J. Bian, “When blockchain
meets distributed file systems: An overview, challenges, and open
issues,” IEEE Access, vol. 8, pp. 50574–50586, 2020.

[22] X. Zhang, Z. Yang, W. Sun, Y. Liu, S. Tang, K. Xing, and X. Mao,
“Incentives for mobile crowd sensing: A survey,” IEEE Communications

Surveys & Tutorials, vol. 18, no. 1, pp. 54–67, 2015.
[23] L. Breidenbach, C. Cachin, B. Chan, A. Coventry, S. Ellis, A. Juels,

F. Koushanfar, A. Miller, B. Magauran, D. Moroz, et al., “Chainlink 2.0:
Next steps in the evolution of decentralized oracle networks,” Chainlink

Labs, vol. 1, pp. 1–136, 2021.
[24] M. Di Francesco, L. Marchesi, and R. Porcu, “Kryptosafe: managing

and trading data sets using blockchain and ipfs,” in 2023 IEEE/ACM 6th

International Workshop on Emerging Trends in Software Engineering for

Blockchain (WETSEB), pp. 5–8, IEEE, 2023.
[25] S. Müller, A. Penzkofer, N. Polyanskii, J. Theis, W. Sanders, and

H. Moog, “Tangle 2.0 leaderless nakamoto consensus on the heaviest
dag,” IEEE Access, vol. 10, pp. 105807–105842, 2022.


