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Abstract—Data management services present a challenge in

terms of trust, as service managers can access the data on their

servers easily. Decentralized data services and smart contracts

can solve problems related to the presence of centralized trusted

authorities, but in turn they can introduce other issues related

to compliance with data protection and regulations (e.g., GDPR).

Historically, encryption has been used to address some of these

concerns, but it restricts data sharing. To facilitate encrypted

decentralized file storage while enabling data sharing, we propose

a Key-Redistribution Proxy Re-Encryption (KeRePRE) system.

KeRePRE is a decentralized and encrypted data-service, where

authorization servers are part of a threshold proxy re-encryption

scheme. A key-redistribution mechanism (that extends the Um-

bral scheme) allows for the addition and removal of managers

in a decentralized and trustless manner. Additionally, we offer

a proof of concept implementation, where data access control is

based on an access control list, implemented as a smart contract

in a DLT, and can be read-only accessed by the authorization

servers.

Index Terms—Proxy re-encryption, Threshold scheme, GDPR,

Data Sharing, Decentralized File System

I. INTRODUCTION

Nowadays, data are of high value to individuals, businesses,
and governments. The increasing amount of data generated by
various sources like mobile devices, sensors, and social media
has given rise to big data and data-driven decision-making.
However, the volume and complexity of data have created
significant challenges in managing, processing, analyzing, and
protecting them, especially regarding the new directives related
to data protection such as GDPR [1]. To overcome these
challenges, data intermediation has become crucial. A data
intermediator acts as an intermediary between data holders
and recipients, facilitating the flow of data while ensuring its
quality and security.

Decentralized systems such as blockchains or Distributed
Ledger Technologies (DLTs) have gained considerable at-
tention in data intermediation. These systems allow data
recipients and processors to be limited to the data holder’s
instructions through smart contracts, enabling intermediation
with a higher level of control over data, see e.g. [2]. De-
centralization, however, necessitates cryptography to secure
decentralized systems and protect data while sharing it. In a
trustless or semi-trusted decentralized system, comprehensive
security is essential to maintain user trust. To solve these
problems, approaches such as (t, n)-threshold cryptosystems

involve multiple parties performing a cryptographic operation
together, using a share of a secret in a secret-sharing scheme,
in order to transform one central party into a committee. In
particular, a Threshold Proxy Re-Encryption (TPRE) scheme
delegates some data intermediaries (proxies) to re-encrypt the
encryption key in favor of a data receiver [3]–[5].

However, most threshold cryptosystems assume that data
intermediaries will protect their secret shares, which works as
a theoretical assumption but does not reflect the real-world
conditions. For example, Verichain recently exposed a critical
key-extraction attack [6], which invalidates implementations
of commonly used threshold cryptosystems. Similarly, the
security firm Trail of Bits found a critical bug in common
threshold signature libraries [7]. In these cases, the presence
of a key redistribution would have been put to good use, in
order to remove the vulnerability from the present committee.
In this paper, we propose a Key-Redistribution Proxy Re-
Encryption (KeRePRE) for TPREs to manage situations where
parties lose their share, are corrupted or faulty, in a semi-
trusted decentralized environment. The mechanism enables
key rotation, addition, or deletion [8] and helps manage
compromised or leaked keys and handle situations when new
parties are added or old parties are dismissed.

Furthermore, we focus on a specific strand of literature
concerned with data access control managed using crypto-
graphic techniques in a decentralized manner. The literature
usually deals with personal data, which requires strong data
protection and security mechanisms because they identify or
render identifiable a data subject [2], [3], [9], [10]. We propose
a DLT based Personal Data Store (PDS) to enable data subjects
to decide how (through smart contracts) and where to store
their data and handle data encryption and key distribution
using TPRE with the key redistribution mechanism. The PDS
comprises two main components, Decentralized File Storage
(DFS), which stores the data to encrypt or decrypt, and a
DLT, which avoids the typical DRawbacks of server-based
approaches, such as censorship or single-point-of-failure, and
offers features like data traceability, verifiability, and smart
contract execution.

Our Contributions: In summary our contributions are:
• Our proposal, KeRePRE, builds upon Nunez’s previous

work [5] and introduces a novel threshold-based proxy
re-encryption scheme that supports key-redistribution.



• To showcase the feasibility of our proposal, we have
developed an independent implementation specifically for
the Umbral system. The code is publicly available on
GitHub1.

• Our proposed scheme, KeRePRE, has the potential to
create a decentralized Personal Data Store (PDS) linked
to a Distributed Ledger Technology (DLT) that is fully
compliant with the GDPR regulations. We demonstrate
this capability in our research.

Outline: The structure of this paper is as follows. In
Section II, we introduce the building blocks that comprise the
KeRePRE system. In Section III, we describe how KeRePRE
operates within the context of the Umbral system. We then
demonstrate how KeRePRE operates and analyze its security
and data protection enhancements in Section IV and Section
V, respectively. In Section VI, we present an overview of
other works in the fields of threshold proxy re-encryption
schemes and personal data sharing mechanisms that involve
a Distributed Ledger Technology (DLT).Finally, we conclude
in Section VII.

II. BACKGROUND

In this section, we give an overview of the system’s
architectural components needed to understand Section III.
Throughout this section, we assume two parties: a data-holder
(DH) which has some data stored in a decentralized personal
data-space (PDS) and a data-receiver (DR) which wants to
access it.

A. Threshold cryptosystems

A (t, n)-threshold cryptosystem involves multiple parties
in a set P = Pii2I performing a cryptographic operation
together. The key feature of this system is that a minimum
number of parties, referred to as the “threshold” t, must
participate for the cryptosystem to succeed. In other words,
the cryptosystem will only work if at least t out of the n

parties are honest and follow the protocol. Since generally a
cryptosystem is used to give access to some information, we
say that ⌃ = (t, n) is an access structure.

Algorithm 1 LsssPrep for a (t, n) secret sharing
Require: I: set of identities of parties, t: threshold, s: secret

1: n = len I
2: for i = 1 . . . t� 1 do . Initialize ai for i = 0, . . . , t� 1
3: ai  $ F
4: end for

5: a0 = s . q(0) = s

6: Initialize q(·) = a0 +
P

t�1
i=1 ai·i . Polynomial

initialization
7: for i in I do . The values of I must be numbers in the

field F
8: Send (i, q(i)) to party i

9: end for

1https://github.com/disnocen/umbral-rs

Two research strands involve threshold cryptosystems:
threshold signing and secret sharing. On the one hand, (t, n)-
threshold signing, considered to have been introduced by
Desmedt in 1987 [11], is a process where t-of-n parties are
involved into signing a message on behalf of all n participants.
On the other hand, in (t, n) secret sharing a secret s is split
into n different parts called shares (or fragments) such that
t of them are necessary to reconstruct the original s. Among
many secret sharing schemes, we focus on the Shamir Secret
Sharing (SSS) one since it is the one used in both Umbral and
the redistribution mechanism our work is based on.

The scheme is based on polynomial interpolation over a
field. In a field F, it is well known that given t points in the
2-dimensional plane {(xi, yi)}ti=1 there is one and only one
polynomial q(x) of degree t�1 such that q(xi) = yi for each
i = 1, . . . , t. Assume a secret number s. As mentioned, this
secret can be split and shared to n parties in such a way that
t of those shares are needed to reconstruct s: see LsssPrep in
Algorithm 1.

Since the shares are distinct points on a plane for polynomial
q(·), the SSS scheme uses Lagrange Polynomials applied to
the shares, as presented in Algorithm 2, to reconstruct the
secret.

Algorithm 2 LsssRec for a (t, n) secret sharing
Require: I: set of identities of parties, t: threshold

1: n = len I
2: Wait for t shares ij1 , q(ij1) from parties ij1 , . . . , ijt 2 I
3: L = 0
4: for k = 1 . . . t do

5: �k =
Q

t

w=1,w 6=k

ijw

ijw�ij
k

. Create a Lagrange basis
6: L = L+ �kq(ijk) . Use Lagrange polinomials to

create q(0) = s

7: end for

8: return L . L = q(0) = s

B. Proxy re-encryption schemes
A well-known problem faced by data holders (DHs) in

a decentralized PDS is the lack of direct control over the
outsourced data in E [12], [13], which raises security concerns,
especially in (pseudo) anonymous settings.

One of the most effective ways to deal with this issue is
for the DH to encrypt the data before uploading it to the
PDS [14]. This naive solution, though, inhibits the delegation
of access (i.e. “sharing”) to a data receiver DR of a piece
of data pdi, since the process requires DH to download, re-
encrypt pdi for DR and re-upload pdi. To solve this issue
Blaze et al. introduced the Proxy Re-Encryption (PRE) scheme
in [15]. A PRE is a semi-trusted proxy that transforms a
cyphertext encrypted for DH to a cyphertext encrypted for
DR, without decrypting the cyphertext or leaking the related
plaintext. Specifically, with a PRE, DH can encrypt pdi under
its own public key before uploading it to the PDS. Then,
after receiving the request of data sharing from DR, DH can
generate a proxy re-encryption key and send it to the PRE. The



PRE is then able to re-encrypt pdi into a cyphertext under the
public key of DR.

While these cryptographic primitives solve the privacy prob-
lem (the proxy can not read the data stored/sent), it does not
solve the censorship problem: the proxy can block any request
and decline any sharing of the data. In that regard, the proxy
acts as a trusted and custodial (of data) party.

Similarly to other projects, it is possible to mitigate this risk
by employing multiple nodes together and create a threshold
cryptosystem for proxy re-encryption nodes, in other words
a threhsold PRE. One way to achieve that is explained in
the work by Nunez [5], which is called Umbral. Umbral is
a threshold PRE which uses a Key Encapsulation Mechanism
(KEM) to obtain a Data Encryption Method (DEM). More
explicitly, in Umbral, each file pd 2 D from a DH is
encrypted with a symmetric key K 2 K. The encrypted file is
a couple (Enc(pd,K),EncpkDH

(K)). The Umbral threshold
PRE leverages the ReKeyGen procedure to output multiple
shares of the re-encryption key via a SSS scheme. These shares
are called fragments or more concisely kFrag, in [5], and
are distributed to the node operators as part of the ReKeyGen

routine. More formally:

Definition 1 (TPRE). A (t, n)-threshold proxy re-
encryption scheme (TPRE) is a tuple of algorithms
(KeyGen,ReKeyGen,Encapsulate,ReEncapsulate,
DecapsulateFrags):

• (skA, pkA) KeyGen(1�) On input security parameter
�, the key generation algorithm KeyGen outputs a pair
of secret and public keys (skA, pkA) for user A.

• kFrag1, . . . , kFragn  ReKeyGen(skA, pkB , n, t): On
input the secret key skA of user A (generally the DH),
the public key pkB of user B (generally the DR), a
number of shares n and a threshold t, the re-encryption
key generation algorithm ReKeyGen computes the re-
encryption key rkA!B and then uses SSS scheme to share
it in n different kFrags, where kFragi = (idi, rki, opt),
with idi the identity of node i, rki its share of the re-
encryption key and opt optional arguments depending on
the implementation.

• (K, �K)  Encapsulate(pkA): On input the public key
pkA of user A, the algorithm Encapsulate outputs a
symmetric key K 2 K used to encrypt the data and a
capsule �K = Enc(K).

• cFragi  ReEncapsulate(kFragi, �K): On input
a key share kFragi and a capsule �K , algorithm
ReEncapsulate outputs a share (or fragment) of the
capsule cFragi of the capsule �K .

• K  DecapsulateFrags(skB , pkA, {cFrag}>t

i=1): On
input the secret key skB of user B, the public key
pkA of user A and at least t cFrags, algorithm
DecapsulateFrags outputs K (note that it is the same
K of algorithm Encapsulate).

Figure 1 highlights the flow of the procedures which we
explain in details in Section IV

From Definition 1, it is easy to see that a PRE is an
extension of a public key encryption scheme (PKE). Therefore
a PRE must follow the security models of PKEs which present
an interesting challenge. On the one hand, PREs have to
guarantee confidentiality and validity of the cyphertexts as
any PKE. On the other, PREs have to allow re-encryption of
cyphertexts. A thorough overview of how different schemes
deal with the challenge is presented by Nunez et al. in [5].

C. Key redistribution mechanisms

Most threshold cryptosystems, and particularly secret shar-
ing schemes, assume parties will take good care of their share.
In fact, if some party Pi loses a share, it is generally said that
Pi is corrupted or faulty. No further analysis on Pi is done,
since from the point of view of the threshold cryptosystem, no
single party is important as long as the majority or minority
of them is still honest, depending on the access structure of
the cryptosystem.

On the other hand, real world deployments of these systems
have to deal with such problems. For example in Proactive
Secret Sharing schemes [16], [17] the participants refresh (or
rotate) their key shares periodically, in order to avoid these
kinds of problems or at least mitigating them. The process is
known as key-refresh or key-rotation.

However, in proactive secret sharing schemes, the access
structure is not changed: the set of parties required for thresh-
old secret sharing are the same before and after the key-refresh.
Therefore, the only way to extend or shrink the access structure
once it is in place is by performing a new distribution of the
shares. This is costly, since it requires DH to recompute all
the shares. Consequently, new approaches have been proposed
in the literature to deal with this issue.

Among those proposals, one that is beneficial for the goal of
this paper is the process of redistribution of shares. Unlike key
refreshing schemes, a redistribution of shares is performed by
the AS, supports the change of the access structure and requires
no input by the DH (beside some authorization if needed by
the general system).

In this proposal and proof of concept2, we use a redistri-
bution method as presented by Desmedt et al. in [11]. The
method leverages a SSS scheme once more and treats each
share as a secret on its own. More formally, given a (t, n)-
SSS scheme with shares s1, . . . , sn:

• s
0
1, . . . , s

0
m
 DesRedistr(s1, . . . , sn): On input t 

k  n shares from a (t, n)-SSS for secret s, algorithm
DesRedistr outputs m secret shares s

0
1, . . . , s

0
m

such that
k of them are needed to reconstruct s.

In practice DesRedistr transforms a (t, n)-SSS into a (k,m)-
SSS.

It is easy to see that if k = t and m > n then DesRedistr

adds a new party to the access structure, while if t < m < n

then DesRedistr removes party from the access structure. We

2A working implementation of the key redistribution for
KeRePRE can be found at https://github.com/disnocen/umbral-
rs/blob/master/src/internal/keyredistrib.rs



TABLE I
COMPARISON OF THE NAMES BETWEEN THE UMBRAL PROJECT AND OUR

EXTENSION KEREPRE

KeRePRE Umbral
Data Subject N/A
Data Holder Alice
DFS Provider N/A
Authorization Server Proxy Re-encryption Node
Data Recipient Bob

will see in Section V-A the constraints on k and m related
on t and n. A working example tailored to our purposes is
presented in Algorithm 3.

III. KEY REDISTRIBUTION

Umbral, which lacks a key redistribution mechanism, cannot
be directly used for key rotation or redistribution. However, in
this section, we demonstrate how we can expand Umbral’s
capabilities to create a threshold PRE that is suitable for real-
world use. We will explain in Section IV how the system can
be applied in a DLT-based PDS to enhance its security and
perform tasks such as key addition, key deletion, or simple
key-refresh. The terminology used is clarified in Section III-A,
where we also introduce the actors and the architecture model.
The key-redistribution mechanism in KeRePRE is divided into
two algorithms: one for managing the kFrags (Section III-B)
and the other for managing the cFrags (Section III-C).

A. Actors and architectural components

1) Actors: We define different actors that have one or more
roles in the system. In detail, we identify the following actors:

• Data subject (DS) - The natural person that uses a
personal device that in turn generates personal data.

• Data holder (DH) - The legal or natural person who has
the right or obligation or the ability to make available
specific data (both personal and non).

• Data intermediary (DI) - The legal or natural person
who mediates between those holders who wish to make
their data available and data recipients. We have two
specializations of data intermediary:

– DFS provider (SP ) - The one that provides the
access to the DFS. This actor provides functionalities
attributed of storing and serving (encrypted) personal
data.

– Authorization Server (AS) - The one that provides
the access to the DLT to the authorization service,
i.e., takes part to the cryptosystem.

• Data recipient (DR) - The legal or natural person to
whom the data holder makes data available.

Since the names of the actors involved in KeRePRE are
different form the usual names due to the specific use case
involved, we provide a comparison of the names for easy
access in Table I

2) Architecture Model: In the following, we use a model
to refer to the elements managed in the system.

• The data holder actor controls a set of personal data that
have not been encrypted, i.e., D = {pdl | 1  l  o}
where o is the amount of pieces of data DH has.

• Furthermore, K = {kpdl
| Enckpd

l

(pdl), 1  l  o} is
the data holder’s set of keys used to encrypt personal
data and E = {epdl | epdl = Enckpd

l

(pdl), 1  l  o} is
the set of encrypted personal data.

• Data holders and authorization servers control a set of
capsules C = {�kpd

l

| �kpd
l

= EncpkDH
(kpdl

), 1  l 
o}, where pkDH is the public key of the data holder (see
Definition 1), that contain a key used to encrypt a piece
of personal data.

• We consider that all DFS providers SP store the data
holders’ set of encrypted personal data edp 2 E and the
associated set of decentralized identifiers used to identify
the epd. In this case, the decentralized identifier is equal
to a hash pointer obtained by hashing the epd, i.e., HP =
{hpepdl

| hpepdl
= Hash(epdl), 1  l  o} where Hash

is a predetermined hash function (e.g., in the IPFS DFS
these hash pointers are CIDs). Thus, hpepdx

is both the
identifier of the epdx datum in the DFS and the on-chain
hash pointer, i.e., that will be stored in the DLT.

B. kFrag redistribution

We assume that either DH or DR triggers a key redistri-
bution. Note that this triggering may be part of a notification
system in the application that asks DH or DR if they want to
act to mitigate a potential threat (such as a share corruption in
one of the operator nodes). We show a representation of the
dynamics of the extended system in Figure 1.

A kFrag redistribution is a procedure that transforms a
kFrag into a kFrag

0. More formally:
• (id, rk0, opt)  kFragRedistr((id, rk, opt)): On input a

kFrag, the kFragRedistr algorithm outputs a new kFrag

with the updated re-encryption key share.
In particular, kFragRedistr focuses on the update of the rk

component into a rk
0 component. The complete kFragRedistr

algorithm for a (t, n) threshold cryptosystem performed by
each party Pi, i = 1 . . . n is presented in Algorithm 3.

To perform a key re-distribution, we use the Desmedt
routine DesRedistr introduced in Section II-C (lines 7-14
of Algorithm 3). Instead of passing the id to the LsssPrep

routine, as done in Algorithm 1, we pass the hashed id hid

instead: this change is done to maintain compatibility with the
original Umbral protocol and does not affect the security of
the Desmedt key-redistribution protocol. On the other hand,
note that we pass the actual id as parameter in the LsssRec at
line 14.

C. cFrag redistribution

As mentioned in Section II-B, for each kFrag there is a
cFrag. The latter is used by DR to recover the data after a
Re� Encryption has been performed by the node operators.
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Fig. 1. The image represents the Umbral work flow with our key redistribution extension (in red). Either DH or DR can trigger a key redistribution
procedure. The nodes in the threshold proxy re-encryption operate the kFrag and cFrag redistribution.

Algorithm 3 kFragRedistr for a (t, n) threshold scheme
Require: kFragi = (idi, rki, Urki ...), D, sid

1: Get idj from each party Pj

2: for j = 1 . . . n do

3: if j 6= i then

4: Compute hidj = H(D, idj)
5: end if

6: end for

7: {si,j}nj=1
j 6=i

 LsssPrep({hidj}nj=1
j 6=i

, rki)

8: for j = 1 . . . n do

9: if j 6= i then

10: Pi sends share (idi, si,j) to party Pj

11: end if

12: end for

13: Wait for all shares {(idj , sj,i)}nj=1
j 6=i

from parties Pj

14: rk
0  LsssRec({(idj , sj,i)}nj=1

j 6=i

)

15: Erase rki and si,j 8j
16: Output kFrag

0
i
= (idi, rk0i, U

rk
0
i ...)

Algorithm 4 cFragRefresh for a (t, n) threshold scheme
Require: cFragi, rki, rk

0
i
, sid

1: (Ei, Vi, idi, XA) cFragi

2: E
0
i
= E

rk
0
i
/rki

i

3: V
0
i
= V

rk
0
i
/rki

i

4: Output cFrag
0
i
= (E0

i
, V

0
i
, idi, XA)

Algorithm 4 shows how a cFrag is updated. Note that
cFragRefresh must be performed after kFragRedistr, since
knowledge of the new rk

0 is necessary to operate the update
of the cFrag. To see why the change works note that:

E
0
i
= E

rk
0
i

rki

i
= (Erki)

rk
0
i

rki = E
rk

0
i (1)

so E
0
i

is constructed as if it came directly from the
ReEncryption function. Moreover, the change does not require
the nodes operators to know E (which would be unfeasible

because of the discrete logarithm problem). All these consid-
erations works similarly for V 0

i
.

IV. A DLT BASED PDS
This section outlines our proposed scheme: a DLT-based

Personal Data Storage (PDS). The design of the PDS addresses
two key issues: the lack of transparency in managing personal
information and the inability to access and make personal
data interoperable. Our PDS offers a user-centered model
for managing personal data, where storage is separated from
the application logic. Providers of personal data apps and
data intermediaries can leverage PDS to demonstrate their
compliance with regulations such as GDPR [18]. The resulting
PDS system is GDPR compliant, providing protection to users’
data, and promotes transparent personal data sharing.

Our system architecture relies on the use of DLTs and
a decentralized file storage (DFS). DLTs offer technological
guarantees for trusted data management and sharing, as they
provide a fully auditable decentralized access control policy
management and evaluation via smart contracts. This feature
enables the actors involved in data processing and control
to demonstrate their compliance transparently. The DFS is
combined with the DLT to overcome the scalability and
privacy issues associated with DLTs while preserving the
benefits of decentralization. A DFS is used for storing data
outside the DLT through “off-chain” storage, and tracing all
data references in the DLT through “on-chain”storage.

The proposed system has four operation: Data Storage, Data
Sharing, New AS Addition and AS removal. In the following
we describe the operations

A. Data Storage
We assume each actor has a unique pair of asymmetric keys

obtained via KeyGen (see Definition 1) In particular, DH has
key-pair (skDH , pkDH), DR has key-pair (skDR, pkDR), and
SPi has key-pair (skSPi

, pkSPi
).

The data holder DH encrypts its personal data pd, obtaining
epd 2 E , using a symmetric key K 2 K obtained through
the function Encapsulate(pkDH). As part of the Encapsulate

function, K is placed in a capsule �K (See Section II-B). The
capsule is sent to the authorization servers AS.



The (personal) data epd is then stored in a DFS associated
with a DS and it is accessible via a P2P network with data
replication mechanisms, making it widely available. epd can
be referenced with its hash pointer hpepd. The pointer is based
on the content hash digest, such as IPFS’s content identifiers,
or CIDs: this ensures data verifiability, since data may have
been altered since it was stored in the PDS and must be
audited.

B. Data Sharing
If a user U wants to access pd, it has to ask DH for

authorization. If DH grants it, then the user becomes a data
receiver DR. In practice that means U sends its public key
pkU to DH as part of the request. By accepting the request,
DH performs ReKeyGen(skDH , pkU , n, t) obtaining the new
key fragments kFrag. DH sends the kFrag to the ASs: each
of them performs ReEncapsulate on the received kFrag. The
state of U changes after being granted access, so it becomes a
data receiver DR (its key pair is denoted (skDR, pkDR) from
now on).

The pointer hpepd is stored in a smart contract implementing
personal data access control. Note that different DLTs and/or
services can use the same data storage system, facilitating
the creation of a PDS for data portability. Therefore, the
primary use of the DLT is the execution of smart contracts
implementing personal data access control.

To obtain all the cFrag, DR has to prove ownership of
pkDR. To do that, DR can sign the message hpepd with
skDR. The signature can be either posted on a bulletin board
monitored by the ASs, or sent to each AS directly, depending
on the implementation.

Upon receiving the signature, each AS checks in the ACL
in the smart contract if DR can access hpepd. If so, each ASi

sends cFragi to DR.
Finally, after collecting all the cFragi, DR can obtain the

symmetric key K and decrypt epd.

C. New AS Addition
Assuming KeRePRE grows in its user base, it is important

for the system to scale accordingly. On the one hand the
ACL management can not scale: the ACL is managed by
a smart contract, therefore scaling that part means dealing
with the topic of blockchain scaling , which we discussed
in a previous work [18]. On the other hand, it is possible to
add new authorization servers to the PDS management. Using
terminology from Section III-A, this means that new ASs have
to be added to the access structure.

To see how it is possible, assume the current access structure
for a PDS is (t, n), i.e. t ASs among n are needed to perform
the ReEncapsulate algorithm for DR so that DR can obtain
K via the DecapsulateFrags algorithm on the {cFrag}>t

i=1
(see Section III-A). Then, a new node SPn+1 can be added by
performing kFragRedistr to create a (t, n+1) access structure.
Specifically, with reference to Algorithm 3, if is possible to
derive hidj for j = 1, . . . , n + 1 and LsssPrep can be called
for {hid}n+1

j=1 . Furthermore, it is easy to see how the access

structure can be incremented not just by 1, but for arbitrary
⌫ > 0 using the same method and in just one iteration create
a new access structure of (t, n+ ⌫).

D. AS Removal
It easy to imagine that in the course of operations, at least

a subset of nodes becomes faulty or are compromised. While
ascertain when a AS has become malicious is outside the
scope of the paper, we focus on how to deal with such cases.

As in Section IV-C, assume a current access structure of
(t, n). We split the explanation into two parts: we first deal
with the case where there are still m honest nodes with t 
m < n and then we deal with the case where m < t.

If there are m honest nodes, t  m < n, then it is possible
to perform kFragRedistr involving only those m honest nodes
and excluding the n�m malicious ones. Since the m nodes
are honest by hypothesis, then we can trust them to perform
data deletion, and therefore exclude the n�m malicious nodes
forever, as we explain in Section V-A. This procedure creates
a new access structure of (t,m).

On the other hand, if m < t, then the system is highly com-
promised and it is impossible to have a secure redistribution
mechanism at this point, see proof of Theorem 1.

V. ANALYSIS

A. Security
One of the innovations of the proposed PDS is the ability

to extend a TPRE to facilitate decentralized and encrypted
data management with a dynamic access structure. The se-
curity analysis is focused on this aspect. Specifically, the
security of adding members (Section IV-C) and deleting mem-
bers (Section IV-D) needs to be demonstrated. To achieve
this, a definition for security within the context of a share-
redistribution scheme is introduced. It should be noted that an
access structure (t, n) requires at least t out of n parties to
reconstruct a secret s.

Definition 2 (Secure Redistribution). Let Redist be a share
redistribution scheme form an access structure ⌃ = (t, n) to
a access structure ⌃0 = (k,m) for a secret s, with m � t. Let
P be the set of parties for ⌃, P 0 the set of parties in ⌃0 such
that |P \P 0| � t. Then Redist is secure if after its run parties
from the set P \ P 0 are not able to reconstruct the secret s

anymore.

We are now ready to state:

Theorem 1. In the hypothesis of Definition 2, if 2t > n, then
kFragRedistr as presented in Algorithm 3 is a secure share
redistribution scheme from ⌃ = (t, n) to ⌃0 = (k,m) with
m � t and k  m.

Proof. The proof strongly follows the work of Desmedt et al.
[11], since the routine kFragRedistr is inspired by it.

First of all, note that a change from an access structure
⌃ = (t, n) to a access structure ⌃0 = (k,m) is feasible if and
only if there are still are at least t honest parties, otherwise
it is impossible to reconstruct the secret s in the first place.



This is equivalent to ask for a honest majority since t > bn2 c.
Furthermore, note that if m < t then it is not possible to
reconstruct the secret, since t is the least amount of number
of parties in P needed to reconstruct s according to ⌃. If all
the constraints are satisfied, then kFragRedistr is equivalent to
the system of Theorem 1 in [11]. Consequently, it is possible to
apply Corollary 3 of [11] and conclude that it is sufficient that
all the honest parties in P erase rki and si,j 8j to guarantee
that parties in P \ P 0 can not reconstruct secret s. Parties are
required to do this operation in Line 15 of Algorithm 3.

B. Data Protection

As per Article 32 of the General Data Protection Regulation
(GDPR) [1], data controllers, or authorization servers (Section
III-A, must adopt appropriate security measures to guarantee
the confidentiality and integrity of personal data. Encryption
is one among the recommended security measures to protect
the data from unauthorized access, albeit not a perfect one.
In fact, the disclosure of an encryption key is a considerable
risk to the confidentiality and integrity of personal data. In
such a scenario, data controllers must promptly take actions
in compliance with the GDPR (as per Articles 33 and 34) [1].

In this paper, we assert that KeRePRE enhances the efficacy
of certain steps that the data controller must perform in such an
eventuality. The primary step is implementing corrective mea-
sure to prevent future breaches. This may include enhancing its
encryption protocols and improving access controls. KeRePRE
enables authorization servers to perform key deletion and
addition procedures easily, thus allowing them to comply with
the implementation of corrective measures.

VI. RELATED WORKS

A. Threshold Proxy Re-Encryption in DLTs

One of the first applications of TPRE into a DLT environ-
ment can be seen in the proposal by Chen et al. in [4]. The
authors apply a TPRE to the access permission mechanism
of a consortium DLT. On the other hand, Egorov et al. in
[19] propose a management service in a decentralized network
provide in encryption and cryptographic access control. Simi-
lar to our proposal, their TPRE reference software is Umbral
[5]. Differently from them, we add a key re-distribution
mechanism.

More recently, Chen et al. in [3] propose an architecture that
converges TPRE and DLT consensus algorithm for the creation
of a decentralized key management system tailored for the
Internet of Things. This system too lacks a key redistribution
mechanism. Bai et al. [20] propose a GDPR-compliant data
storage and sharing framework using blockchain for smart
healthcare systems where a PRE network is used to share
the encrypted data. Also in their case, there is no use of key
redistribution mechanisms. Furthermore, their PRE network
solution does not involve a threshold scheme and can lead to
single-point-of-failures.

B. DLT and personal data sharing
Several research works have proposed the use of DLTs for

data management in order to create innovative smart services
and promote social good applications [21], [22]. Typically,
these approaches involve storing data off-chain while utilizing
the DLT to provide data access transparency and granular
control at the user level. Access control mechanisms that
leverage DLTs and smart contracts have been proposed to
solve centralization and privacy issues (see for example the
proposal by Jemel et al. [23]) and to enable secure storage,
sharing, and transmission of data. Many researchers have
focused on designing data management systems that preserve
user control over their data and meet GDPR requirements. For
instance, Merlec et al. [9] present a GDPR-compliant system
where users have control over their personal data collection
and transaction history is recorded on the blockchain for data
provenance. Similarly, Hawig et al. [24] propose a distributed
architecture to exchange health data, while Koshina et al. [10]
leverages smart contracts for consent to enable healthcare data
exchange. In both cases, users can keep their medical data
in a personal data account hosted on any cloud-based data
management service and customize consent preferences using
smart contracts. Chang et al. present DeepLinQ [25], a multi-
blockchain architecture similar to our proposal. It facilitates
privacy-preserving data sharing in healthcare by providing
granular access control and smart contracts. Finally, Yan et
al. [26] introduce a Personal Data Store (PDS) that enables
users to collect, store, and share their data with third parties
using a Secret Sharing scheme. However, this approach is not
GDPR compliant since personal data is stored on-chain.

VII. CONCLUSIONS AND FUTURE WORKS

This paper proposes a DLT-based personal data storage
system that utilizes a threshold proxy re-encryption scheme
combined with key redistribution

In particular, the use of smart contracts let users define and
enforce access policies for personal data: smart contracts can
provide a transparent and auditable mechanism for managing
access control that is resistant to tampering and unauthorized
modifications, while the immutability of DLTs ensures that
access policies cannot be altered without the explicit consent
of all relevant parties.

While an implementation of the key re-distribution is avail-
able online3, in the future we aim to complete the implemen-
tation of the whole system.
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