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Abstract—Location-based services are at the heart of many
applications that individuals use every day. However, there is
often no guarantee of the truthfulness of users’ location data,
since this information can be easily spoofed without a proof mech-
anism. In distributed system applications, preventing users from
submitting counterfeit locations becomes even more challenging
because of the lack of a central authority that monitors data
provenance. In this work, we propose a decentralized architecture
based on blockchains and decentralized technologies, offering a
transparent solution for Proof of Location (PoL). We specifically
address two main challenges, i.e., the issuing process of the PoL
and the proof verification. We describe a smart contract based
implementation in Reach, a blockchain-agnostic smart contract
language, and the tests we conducted on different blockchains,
i.e. Ethereum, Polygon, and Algorand, measuring latency and
costs due to the payment of fees. Results confirm the viability of
the proposal.

Index Terms—Distributed Ledger Technology, Decentralized
File Storage, Distributed Hash Table, Keyword Search, Smart
Contracts

I. INTRODUCTION

Nowadays, many users’ activities are supported by a differ-
ent number of mobile applications, leveraging their position
to offer specific location-based services. For example, trust-
worthy crowd-sourcing of urban or environmental obstacles
for accessibility purposes [1], [2], customer-loyalty reward
systems that offer discounts to users who frequently visit the
shop, privacy-preserving contact tracing [3].

These kinds of systems have at least three issues to cope
with. First, some level of trust is needed in the user that crowd-
sources some data related to a certain position. This led to the
idea of a Proof-of-Location (PoL) because the location could
be easily spoofed [4]. Second, there is the need to ensure,
on the other hand, some privacy guarantees to the users that
generate data, so as to avoid everyone being entitled to know
a specific user location at a certain time. Third, the usual
approach is to resort to a centralized system, where a single
entity is responsible for collecting and storing data, users that
generated them, and their associated position representing,
somehow, a PoL. While this solution can help in dealing with
the two issues above, it raises some concerns on personal data
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sovereignty, as location data is one of the most sensitive cases
with respect to users’ data exploitation [5], [6].

With this in view, in this paper we propose a decentralized
Proof of Location (PoL) system, based on blockchain and
distributed storage technologies. Our system is designed to be
decentralized, so as to avoid the presence of single point of
failures and to reduce its typical risks [7]. Arguably, the cen-
tralization of power in a few entities’ hands is likely to signifi-
cantly threaten many aspects of location-based services’ users,
e.g., information privacy, censorship. Through our solution,
users can generate a Location-Proof (LP) (i.e. the certificate
generated by the PoL service) in a private, decentralized, and
distributed way, using nearby users as witnesses. In particular,
the proposed system exploits (i) IPFS [8] to store data; (ii)
a Distributed Hash Table (DHT) organized as a hypercube
[2] to manage all the discovery activities to locate, witness,
and verify that the LP is correct; (iii) smart contracts to
automatically handle all the interactions among the involved
entities in the LP generation and verification.

We tested our decentralized application on different smart-
contract-enabled blockchains, since many exist and with very
different characteristics. Specifically, we chose Ethereum and
Algorand, also using a layer-2 solution proposed by Polygon
chain. During the tests, we made a performance analysis to
evaluate speed and cost transaction metrics. In order to develop
the smart contracts source code only once, we used Reach,
a blockchain-agnostic language that builds smart contracts
for each considered blockchain. Our results demonstrate the
viability of the proposal and suggest that good performance
can be obtained through the use of Algorand and layer-2
Ethereum based solutions.

In summary, the contribution of this work concerns the cre-
ation of a PoL system which prevents fake-location submission
and allows data storing in a decentralized architecture and data
integrity verification through the use of a distributed ledger and
smart contracts.

The remainder of this paper is organized as follows. Section
Il provides the necessary background and discusses some
related works. Section III presents the system model. Section
IV focuses on the smart-contracts we built to implement the
system. Section V provides a discussion on the experimental
evaluation we conducted to assess the system implementation.
Finally, Section VI provides some concluding remarks.



II. BACKGROUND AND RELATED WORKS
A. Data Storage and Discovery

The need for verifiability and untamperability, in our ap-
plication scenario, suggests resorting to Distributed Ledger
Technologies (DLTs) as a main underlying system. However,
since storing data directly on a ledger can be expensive and
time-consuming, some strategies have been proposed to store
data inside Decentralized File Storage (DFS) systems, such as
IPFS, and then add specific hash pointers into the DLT [9].
Interplanetary File System (IPFS) is a DFS system that allows
P2P file sharing to every node that wants to participate. The
IPFS protocol assigns each object to a unique address called
Content IDentifier (CID) built hashing the file content.

In order to ease the discovery of data, we included in the
system a Hypercube DHT [2]. The Hypercube is a Distributed
Hash Table (DHT) that, similarly to other content addressable
networks, organizes peers (and contents) in a n-dimensional
Cartesian coordinate system. Each node is responsible for a
specific keyword set and the related content. Upon request
for data lookup based on some specific keywords, a specific
Peer-to-Peer (P2P) protocol allows identifying the node that
stores information where such data is located. In our system,
data are located in the DFS and the related CIDs, that have
the twofold role of content identifier and digest to check the
validity of the data, are stored in the DLT (for verifiability
purposes) and in the Hypercube (for content retrieval purposes)
[10]. More in detail, our system stores in the Hypercube the LP
data that verifiers have validated, accessible through the CID,
together with all additional application-dependent information.
For instance, we developed a use-case application where users
can report critical points in an urban area or environmental
issues, such as illegally abandoned wastes.

B. Reach: a blockchain-agnostic language

Reach [11] is a high-level language released in 2020, similar
to Javascript, which allows the creation of Decentralized
Applications (DApps) on a specific blockchain chosen by
the programmers. Reach is blockchain agnostic, since it is
possible to run a DApp in different blockchains without any
code change. One of the big advantages of Reach is the
verification process of the written code in order to guarantee a
safe and efficient program, e.g., the “token linearity property”
verification which requires an empty balance when the smart
contract terminates. When a DApp is built, the Reach builder
produces the smart contract and an intermediate component,
that we refer to as middleware. This middleware offers a
frontend system and a backend that manages the connection
between the middleware itself and the smart contract. All the
complexity is hidden, and for this reason, the developers do
not have to specify the details about how a smart contract
works at a low level, but only its rules.

C. Open Location Code

The use of latitude and longitude data provided by the GPS
and the usage of Location Based Service (LBS) is fundamental
to identify and represent a specific location. However, they are

considered challenging to use, since they require too much
time to get an accurate position, and prone to errors, e.g.,
if swapped they represent a completely different position.
A Location Encoding System can solve these problems by
associating an alphanumeric, but short, string to a geographic
location. More specifically, the Open Location Code (OLC) is
an implementation of this type of system. It is a technology
developed by Google that implements a partitioning of the
whole Earth’s surface in “tiles”, then each tile is labeled using
an unique code. The OLC is represented as a string from 2 to
15 characters long. The default OLC length is 10 digits and
its precision is 13.9 meters. The higher the number of digits,
the smaller is the considered area and the higher the precision
of the location.

D. Decentralized Identity

Decentralized IDentifiers (DIDs) are a new type of digital
and globally unique identifier, standardized by W3C. Each
ID is structured as a document (DID document) that contains
detailed information about the DID itself. For instance, it can
specify which is the entity that has the authority to modify the
document (DID controller) and information for authenticating
the DID owner. Moreover, it contains information about where
to find the document (DID resolution) and the DID method
that identifies where such resolution happens, e.g., did:btcr
specifies that the ID refers to the Bitcoin blockchain [12].

E. Related Works on Proof of Location

The majority of works on PoL focus mainly on security and
privacy challenges. Generally, PoL systems rely on centralized
verification approaches, based on the presence of a central
database and related service that can check the proximity
of a prover to a witness. Related works can be broadly
subdivided into two categories, i.e. infrastructure dependent
and infrastructure independent.

1) Infrastructure dependent: In this type of system, usually,
a trusted fixed access point (e.g. Wi-Fi) or specific hardware is
employed to check users’ location and then issues a location
proof. In [13], for instance, users can communicate with access
points or cell towers, requesting a LP. However, the privacy
issues are not considered. Similarly, in [14], a centralized
solution is proposed for generating LPs that manage the ver-
ification process through access points, which are considered
trusted by default.

Another infrastructure-dependent project is FOAM [15]
which is a decentralized open infrastructure that is trying to
use the concept of zone and zone anchor (i.e. a radio beacon),
placed outdoors, creating a trusted zone used for location
tracking. FOAM uses Ethereum blockchain to allow users to
contribute, and control when and with whom they share their
personal data.

Another Ethereum-based project relies on the existing in-
frastructure of a mobile network operator leveraging a vast
network of cell towers [16]. To apply this strategy, the user
must be equipped with a terminal, or an IoT device, that
must be locatable in terms of the network cells. Specifically,



the authors of the paper propose an approach to represent
geofences using Ethereum smart contracts, checking if the
user’s position (using the terminal) is located inside the virtual
borders and then trigger specific actions accordingly. The
drawback of this approach is the relevant cost that this solution
requires.

2) Infrastructure independent: According to [17], decen-
tralized systems can be used to design a more informed and
participatory collective decision-making utilizing the concept
of witness presence, and remain independent from the use of
specific hardware/infrastructure. The idea is thus to resort to
the presence of witnesses that use a short-range technology
of wireless radios, e.g. Bluetooth, that ensures the physical
proximity of mobile users nearby. The absence of access
points allows a cheaper system deployment, with respect to
one that requires a specific infrastructure. Usually, since the
witness is not trusted, a Verifier user is required to verify
the generated LPs. APPLAUS [4] is one of the pioneer
infrastructure-independent projects that proposed a centralized
scheme where, through a short-range communication method,
users mutually generate location proofs and report them to
a server. The proof requested by the prover is generated by
a witness using a random number, pseudonym, computing a
hash code and then signing it through a public-key encryption
scheme. Then the proof will be sent to the central server by
the prover. One of the participants in this architecture is the
Central Authority, who knows the mapping between the public
key and the real identity of the provers.

In the blockchain-based architecture proposed in [18], valid
LPs are recorded into blocks. However, this solution is vul-
nerable to collusion attacks because the protocol allows direct
communication between provers that could cheat the system.

Another infrastructure-independent and blockchain-based
solution is the PASPORT architecture [19], where the main
actors are the prover, witness, and verifier empowered to assign
the witness to the prover for the location-proof generation. The
authors claim that their system was Prover-Prover and Prover-
Witness collusion resistant, however, the verifier could not act
in “good-faith” and misbehave.

Gambs et al. proposed the PROPS architecture [20] which,
although it follows a collaborative approach, uses a single
Location Based Service for the verification phase.

III. DECENTRALIZED PROOF OF LOCATION SYSTEM

In this section, we describe the system architecture and the
design choices we made to implement the PoL. System and
the related Decentralized Application (DApp).

The PoL. DApp is able to retrieve data and related LPs
and show them to the users without the need to interact
with centralized authoritative servers. This is made possible
through an (off-chain) interaction with a hypercube DHT for
the data lookup and retrieval, while resorting to blockchain
smart contracts to verify the truthfulness of the data in the
DHT.
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Fig. 1. High level description of the system architecture.

A. System Architecture

Figure 1 represents the general architecture of the system,
characterized by the use of the following decentralized tech-
nologies, i.e. a Hypercube DHT for data location and retrieval
[2], IPFS as decentralized file storage where data is actually
stored [9], and the blockchain to run the PoL service.

Data storage and retrieval: As mentioned, data is stored
in IPFS, thus the main issue here is how to retrieve data,
once published in this decentralized file storage. While, in
general, the Hypercube DHT might be used to perform data
lookup based on a variety of possible keywords [2], in this
work we focus on the location of generated contents. Thus,
we are considering a typical situation where a user looks
for some data which has been generated at a given location,
i.e. the location is the keyword used to search contents. To
this aim, the keyword set of the Hypercube is associated
with the user’s location using the Open Location Code (OLC)
technology [21]. Going into the specifics, a dual encoding is
exploited. The original location of the user, represented with
a classed latitude-longitude format, is firstly converted into
the respective OLC and then to a r-bit string compatible to
the ID space of the Hypercube DHT. This way, the location
is associated with a node of the Hypercube DHT, which is
the one entitled to handle information related to that specific
geographical area. Details about this procedure can be found
in [2].

The blockchain as the driver for PoL: The main part
of the PoL system relies on the use of a smart-contract
based blockchain technology. The main actors involved in
the interactions are essentially four: the Prover, the Witness,
the Verifier, and the Certification Authority. We describe here
below their role in isolation.

o Prover. The Prover is a user with a mobile device, who
needs to validate his/her location by obtaining verifiable
proof.

o Witness. The Witness is a user located nearby the Prover.
Its primary role is to compute and issue a LP that it
will be sent back to the Prover. We assume Witnesses
are untrusted. To ensure that LP cannot be forged, it is



signed by the private key of the witness generating the
proof.

o Verifier. The Verifier is in charge of confirming the loca-
tions (and other information) stored in the blockchain. It
also checks the validity of prover and witness signatures.

o Certification Authority. Another important actor is the
Certification Authority (CA), not shown in Figure 1 for
the sake of simplicity. The CA is in charge of certifying
the Verifiers and maintaining the mapping between users’
real identity and their pseudonyms (public keys). To
become a Witness, one must authenticate to the CA using
their public key. In this way, the witness’s public key will
be added to a witnesses list, which is delivered to the
Verifier (this is a common solution exploited in the state
of the art, e.g., PASPORT [19]).

B. Compute and verify the location-proof

Create the location-proof: When we talk about computing
the LP, we are referring to the moment when the witness uses
his private key applied to a hash function on Prover proof. In
our work, the Prover will broadcast, to a nearby Witness, a
request, Figure 2, that is composed of the following data:

e The current location;

« His DID;

e The nonce: a random number;

o The CID used to retrieve the report with IPFS'.
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Fig. 2. Creation of a location-proof.

The data located inside the request will be used by the
Witness to build a LP, signed with its private key, S(Proof),
and then send it back to the Prover. Recall that, before starting
to build the LP, the Witness must authenticate the Prover using
the DID resolution.

All of the parameters contained inside the request, shown
in Figure 2, will allow the Verifier to check that the
proof/certificate is associated with a well-identified Prover in
a specific location, in a range of some witnesses. This is why
we decided to hash the DID together with the location: if we
hadn’t put this, the Verifier wouldn’t be able to attest that the
Prover was in the position that he claimed.

Location-proof verification: After computing the LP, the
data inserted by Provers inside the smart contract have to be
verified by specific users, i.e. Verifiers, that will subsequently
insert the data inside the hypercube.

'We assume that the Prover has already uploaded his report’s data on IPFS,
thus obtaining the resulting CID.

In our approach, the Verifier has access to a list of public
keys of Witnesses. This list will be delivered to Verifiers by
the CA every time a new Witness is added, and will be used
to check which Witness has signed the LP of the Prover.

Generally, the verification process executed by the Verifier
is composed of two main parts:

1) Check that the proof is valid and has been signed by a

known Witness;

2) Check that the hash inside the contract, signed by the
Witness, is equal to the hash of the concatenation of
DID, location, nonce, and CID. If their equality are
confirmed, both the location and the CID correspond to
the original declared by the Prover and attested by the
Witness through the generation of the proof.

Specifically, the Verifier will check that the hash located inside
the smart contract is equal to the hash result obtained by
applying the public key of the witness on the signed proof.

IV. SMART CONTRACT BASED PROOF OF LOCATION

In this work, we leverage smart contracts to temporarily
store the data that still have to be verified and which are sent
by Provers. Specifically, we decided to associate a different
location for every smart contract that could be created, storing
the contract id inside the hypercube. In particular, some data
that has to be stored are the following:

o DID of the prover;

e Hash of the Proof;

« Signed Hash of the proof;

o Prover wallet address: used to return possible rewards;

o The nonce used by the witness for generating the proof;

e CID (Content IDentifier) of the data.

In order to store data inside the contract, Reach’s Maps have
been used. They allow the storage of information using a
key-value approach. For the sake of scalability, every smart
contract is in charge to a specific location area, whose size
should be tuned based on different parameters such as the data
workload overhead, geographical constraints, etc. To retrieve
the smart contract the decentralized discovery system proposed
in [2] is employed (but in general any kind of service discovery
service can be used). The search key is the location area, the
result of which is the smart contract in charge of that location.

A key aspect, during the bootstrap phase of the system, is
the creation of the smart contracts associated with each specific
area. To this extent, we adopt a solution based on a factory
pattern. If a request for a novel area to be covered comes to
the system, this request triggers the creation of a novel smart
contract, created by a dedicated factory smart contract. This
solution allows the users to trust a single smart contract, i.e. the
factory, and its source code in charge of deploying novel smart
contracts dedicated to the area. As many smart contracts will
be deployed, the use of the factory pattern avoids the risk of
the code being maliciously modified over time.

A. User rewards

The usage of smart contract enables an automatic reward to
those nodes that participate to the PoL service. Several reward-



ing schemes might be devised, based on the type of specific
application service. In our prototype, rewards are networks
tokens, such as Algos or Ethers, that will be transferred by the
smart contract to Provers in an automatic way when specific
conditions happen. Indeed, in order to validate new proof of
locations, the Verifier will have to insert a specific amount of
reward tokens inside one or more contracts. A Prover will
receive his rewards solely if the Verifier verifies his data,
such as the LP, and inserts them inside the hypercube. The
purpose of this type of incentive is to guarantee continuous
participation in the project through the insertion of new
reports.

V. EXPERIMENTAL EVALUATION

In this section, we will conduct a performance analysis of
our architecture. In this work, we specifically focus on the
interaction between the users and the smart contract. Indeed,
some parts concerning the uploading of the data on Hypercube
and IPFS have already been tested in similar application
scenarios, thus demonstrating the viability of those solutions
(2],

The Algorand and Ethereum performances’ systems have
been measured focusing on transaction latency and cost, both
for the deploy and for the attach operations. In particular, it is
worth noting that the deploy function not only is in charge of
creating and deploying the smart contract in the blockchain,
but it also inserts novel data into the system, such as the
location and the creator’s identity.

As already mentioned, the smart contract was implemented
in Reach. We thus decided to test the smart contract over the
Ethereum testnet, Goerli, the Polygon Mumbai testnet, and the
Algorand testnet. This analysis was conducted using different
numbers of users (up to 32) and creating the corresponding
numbers of smart contracts, up to 8 (a smart contract can
contain up to 4 users that attach to it, including the creator).
It was not possible to extend the tests to a higher number
of users. The reason is that each user needs a minimum
amount of cryptocurrency tokens as a balance, in order to
pay transaction fees, and even if testnets were used, it was
not possible to obtain a sufficient amount of tokens to further
increase the maximum number of users. Users’ behavior
was simulated through a set of digital agents, issuing some
randomly generated synthetic data.

A. Results

Figures 3 and 4 show the latencies (in seconds) for the
three testnets we used, respectively for the deploy and attach
operations. In particular, Figure 3 shows the mean time (and
standard deviation) experienced to create the smart contract
and subsequently insert the data of the LP (location, creator
DID), when varying the number of users that create the
contracts. If we consider only the average time, we can notice
that Polygon performs better than the other two blockchains.
However, Algorand has a similar average latency and a no-
ticeably lower standard deviation.
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For what concerns the attach operation, shown in Figure 4,
Algorand confirms itself as the most performing blockchain,
since its average latency is minimal and its standard deviation
is lower than the other two networks. In this case, we used
a different number of users, acting as Provers and interacting
with the smart contract, in a range from 6 up to 24. The worse
results obtained by Ethereum and Polygon can probably be
explained by their specific protocol to add transactions in the
ledger. In fact, the transaction throughput of these blockchain
can significantly decrease in case of congestion.

Figures 5 and 6 show the box plot chart of the three testnets,
considering the deploy and the attach. Generally, the creation
of a contract can require more time than the attach phase, and
this can be seen on every network. Again, what emerges is
that Algorand performs better than Ethereum and Polygon, in
terms of latency.

Another point in favor of Algorand is that its costs are
very low as opposed to Ethereum and Polygon. A deploy
operation on Goerli can reach a cost equal to 0.1401 ETH
which, at the moment of writing (October 2022), corresponds
to €171.18. Going into details, both Goerli and Polygon,
have a deployment process that used 1,440,385 gas while the



amount of gas used for the attach is 82,437.

In conclusion, interacting with a smart contract that is
deployed on Algorand could allow for saving a lot of time
and money, and developing efficient applications.
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VI. CONCLUSIONS

In this paper, we proposed a decentralized architecture
for PoL services. One of the primary roles of the proposed
PoL. architecture is to avoid fake data insertions (in terms
of geographical provenance). Without it, users would be able
to insert any kind of data, truthful or not, also with the
possibility of overloading the system. This led us to identify
two main challenges of our PoL system: i) computing the LP
in a decentralized manner, ii) verifying that data inserted by
Provers inside Smart Contracts are truthful LPs. Although the
first point has been built to maintain its decentralization, the
second is not completely decentralized for two reasons: there
is a CA and not everybody can act as a Verifier.

An advantage of our decentralized architecture is that there
is no need to employ trusted access points to generate new
LPs. However, we did not focus on Prover-Prover or Prover-
Witness collusions. This can represent future work.
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