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On the Use of Deep Neural Networks for Security
Vulnerabilities Detection in Smart Contracts

Martina Rossini
University of Bologna
Bologna, Italy
martina.rossini3 @studio.unibo.it

Abstract—In this paper, we investigate the use of deep learning
techniques to identify and classify smart contract code vulnerabil-
ities. We collected a large-scale dataset of smart contracts that we
used to train different Convolutional Neural Networks (CNNs)
models. In particular, we used two variants of 2-dimensional
CNNs working on RGB images corresponding to contract byte-
code, a 1-dimensional CNN working on the bytecode directly,
and a Long Short-Term Memory (LSTM) neural network. Given
a set of vulnerability detectors, we employed five classes of
vulnerabilities. Our results show that CNNs provide a good level
of accuracy and demonstrate the viability of using deep learning
techniques to identify smart contract vulnerabilities.

Index Terms—smart contract, code vulnerability, blockchain,
deep learning, convolutional neural networks

I. INTRODUCTION

Smart contracts gained momentum in recent years. The
general interest concerns their unique features, such as im-
mutability, being executed in blockchains, and automatic en-
forceability. This has led to lively research activity regarding
the development of tools for building contracts, as well as
careful analysis comparing smart contracts to legal contracts.
A recent European Union regulation proposal confirms this
general interest [1]. In particular, in the Data Act proposal,
smart contracts are defined as programs on digital ledgers
that execute and settle transactions based on pre-determined
conditions. They are considered a system to promote data
sharing, providing data holders and recipients with guarantees
that conditions for sharing data are respected [2]. However, this
need for “guarantees” raises smart contract security concerns
that need to be solved [3].

At the time of writing, the most popular blockchain platform
to run smart contracts is Ethereum. Ethereum’s smart con-
tracts are written in Solidity, a Turing complete programming
language. This allows blockchain developers to implement
complex business logic solutions and to develop decentralized
applications (dApps) [4]-[6]. However, it also allows for a
bigger chance of bugs and code vulnerabilities. This is a
severe issue since these problems cannot be patched after
deployment due to the immutable nature of the ledger [7].
Thus, a developer should check potentially vulnerable pieces
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of code before deploying its contracts: this is often done
by comparing against security patterns, which help ensure
that the code is reliable but is expert-made and expensive
to produce. Automated vulnerability detection methods only
focus on known bugs and are too time-consuming or rely
on expert-made detection rules. For this reason, some ma-
chine learning and deep learning-based techniques have been
proposed, making it possible to not rely on a heavy feature
engineering phase [8].

This paper explores deep learning techniques, particularly
Convolutional Neural Networks (CNNs), for detecting and
classifying vulnerabilities in smart contracts deployed on the
Ethereum main net. Deep Learning techniques based on CNNs
have long since shown promising results in malware detection
and classification [8], [9]. Our study compares four different
types of neural networks, i.e., a baseline LSTM, a ResNet
1D CNN, and two 2D CNNs (ResNet-18 and Inception v3)
that work on the code bytecode transformed into an RGB
image. We provide an in-depth analysis of these techniques
to classify a dataset of smart contracts we have collected.
To classify our smart contracts, we first employed a set of
vulnerability detectors that we then mapped to 5 different
classes, i.e., access-control, arithmetic, reentrancy, unchecked
calls, and others.

Results show the viability of the proposal as a promising
technique to automatically assess smart contracts’ correctness
and classify their potential vulnerabilities. In particular, ac-
cording to the specific configuration and the available compu-
tational capabilities used during the tests, the ResNet 1D CNN
working directly on the smart contract bytecode seems to offer
the best results in terms of classification capabilities. More-
over, due to the unbalanced sizes of the different classes, the
classification resulted in more effectiveness for the unchecked
calls and reentrancy classes while still providing good results
for others.

To sum up, the contributions of this paper are the follow-
ing. First, we collected a large set of smart contracts and
labeled them based on the different vulnerability detectors and
classes identified above. The dataset is available for public
use. Second, we compare four different types of deep neural
networks trained over our dataset, showing that they can
provide good results in classifying smart contracts. This allows
for code vulnerability detection. With respect to previous



proposals focusing on the use of CNNs for smart contract
vulnerability classification, we thus exploit a different set
of neural networks and a novel, wider dataset which also
considers the possibility of having contracts that are affected
by more than one vulnerability at a time.

The remainder of this paper is organized as follows. Section
IT presents the background. In Section III, we describe the
methodology related to constructing the dataset and the deep
neural networks. Section IV discusses our results. Finally,
Section V provides some concluding remarks.

II. BACKGROUND AND MOTIVATION
A. Smart Contracts

An immutable set of instructions whose execution is cal-
culated deterministically by peers in the DLT network is
embraced by the definition of the smart contract. Each node ex-
ecuting the instructions receives the same inputs and produces
the same outputs, thanks to a shared protocol. This allows
the issuer of a smart contract not to require the presence
of a trusted third-party validator to check the terms of an
agreement. However, since it consists of executable code,
the issuer must also be sure that the behavior implemented
is correct (e.g., through code verification). In Ethereum, the
smart contract is a set of instructions and a state. The latter is
modified utilizing transactions that enclose data and references
to the former. The state evolution is completely traced in
the ledger. This protocol allows computing (quasi-)Turing-
complete programs, i.e., smart contracts capable of processing
any type of calculation where steps are bounded. A price,
measured in a unit called “gas”, is associated with each smart
contract execution, and a gas limit is set to avoid infinite
computation.

Smart contracts offer a variety of applications, ranging from
decentralized finance and traceability of processes up to novel
systems for smart services in different domains [10]-[12].

B. Auditing and Data Act

The European Union Data Act is a regulation that lays
down harmonized rules on making data generated by the use
of a product or related service available to the user of that
product or service or other data recipients [1]. In this act, smart
contract is considered as an appropriate technical protection
measure to prevent unauthorized data access. Indeed, many
proposals already implement Ethereum smart contracts for the
protection of personal data and their sharing [2]. Of course,
all this provided that the smart contract offers some degree
of robustness to avoid functional errors and to withstand
manipulation by third parties.

Auditing contracts for vulnerabilities is a common practice.
This process should preferably be performed while contracts
are still in the testing phase. There have been automated or
semi-automated tools to perform the contract audit:

o manual: manual audits are performed by security engi-
neers through an analysis of the source code and the
dynamics of its execution. The advantage of manual
auditing is the feasibility of understanding the code logic

and identifying logical loopholes, while the downsides
are the auditing speed and expense.

« software tools: automated tools offer scalable solutions
in terms of vulnerability analysis. These are based on
methods such as symbolic execution, fuzzing test, and
taint analysis. Most of these tools analyze either the
contract source code or its compiled bytecode and look
for known security issues.

Defining security patterns requires having a deep knowledge
of the internal workings of the blockchain and Solidity code.
Thus, manual audits can be performed only by field ex-
perts. Moreover, the manual method requires time and effort,
especially considering the rates at which new potentially
exploitable vulnerabilities are discovered. With this in view,
in this paper, we focus on the automation of the auditing
process. Some automated vulnerability detection tools have
been proposed already: the majority rely on symbolic exe-
cution (Oyente [13], Mythril [14]) or are rule-based (Slither
[15], Smartcheck [16]). These tools can reach a high detection
accuracy for known bugs but are either too time-consuming
(symbolic execution) or rely on expert-made detection rules,
thus not resolving our problem. We follow the approach that
some scholars recently undertook, i.e., developing machine
learning and deep learning-based solutions that are usually less
time-consuming and do not rely on a heavy feature engineering
phase [8], [17], [18].

III. METHODOLOGY

This section describes the dataset and the models we used
to classify smart contract vulnerabilities.

A. Dataset

Since smart contract vulnerability classification is a rela-
tively new research area, there are few open-source datasets
of labeled smart contracts, and most are quite small. Two of
them are the SmartBugs [19] wild and the ScrawlID [20]
datasets: they were labeled using different tools and thus
reduce the probability of false-positives. However, they only
contain 6.7k and 47k elements, respectively, making them
too small for training a deep model from scratch. With this
in view, we decided to put together and release our large-
scale dataset, which is available on the HuggingFace hub',
a platform that hosts more than 6K open source datasets as
well as thousands of models. To build this dataset, we first
obtained a list of verified smart contracts on the Ethereum
main net from Smart Contract Sanctuary [21]. The source
code of every contract was then either downloaded from the
aforementioned repository or obtained via the Etherscan API>.
In contrast, the bytecode was downloaded using the web3
Python library, which allows us to interact with a local or
remote Ethereum node. Moreover, when the source code was
organized in multiple files, we flattened it using the designated
Slither tool. Note that while the source code is not employed

Uhttps://huggingface.co/datasets/mwritescode/slither-audited-smart-
contracts
Zhttps:/docs.etherscan.io/



anywhere in our analysis, we still release it along with the
contracts’ bytecode. This makes our dataset easy to reuse for
other types of tasks, including Solidity code generation and
vulnerability classification based on Solidity code.

The final dataset accounts for more than 100k smart con-
tracts labeled using the Slither static analyzer. This tool passes
the code through several rule-based detectors and returns a
JSON file containing details about where those detectors found
a vulnerability. The 38 detectors that found a match in our
dataset were then mapped to the following five classes, accord-
ing to the guidelines provided by the Smart Contract Weak-
ness Classification registry [22], and by the Decentralized
Application Security Project (DASP) [23], two community-
based projects that aim to offer a taxonomy of smart contract
vulnerabilities. In case of ambiguities, we followed the same
classification used in SmartBugs [19].

o Access-control: this vulnerability is common in all lan-
guages, hence not related to blockchain technologies.
Usually, a contract’s functionality is accessed through its
public or external functions. However, if the visibility
of some fields/functions is not correctly set to private,
malicious users could have access to them.

o Arithmetic: this class is related to integer underflow and
overflow errors, which are particularly dangerous in smart
contracts where unsigned integers are prevalent. In case of
overflow, many benevolent pieces of code may be turned
into tools for DoS attacks and theft.

o Reentrancy [24]: this is probably the most famous
Ethereum vulnerability. It occurs when a call to an
external contract is allowed to make new calls to the
calling contract before the initial execution is complete.
This means that the contract state may change in the
middle of the execution of a function.

o Unchecked-calls: Solidity offers some low-level func-
tions like call(), callcode(), delegatedcall() and send(),
which do not propagate errors. These functions return
false, but the code will continue to run; thus, developers
should always check the return value of such low-level
calls. Note that, in alignment with SmartBugs Wild, we
include the results of the Slither detector unused-return
in this category, which checks if the return value of an
external call is not stored in a local or state variable.

o Others: this class groups together the results of all the
other relevant Solidity detectors that were not included
in the previous classes. Examples are: uninitialized-state,
which checks whether the contract has some uninitialized
state variables, incorrect-equality, which checks whether
strict equalities were used to determine if an account
has enough Ether or tokens (something that an attacker
can easily manipulate) and backdoor, which detects the
presence of a function called “backdoor”.

During the dataset construction phase, we collected and la-
beled more than 100k verified smart contracts on the Ethereum
chain. We then separated them into training, validation, and
test sets taking care to maintain the proportion between

classes. In the end, our dataset comprises 79.6k, 10.8k, and
15.9k elements in training, validation, and test set, respectively.
It is also important to note that our approach to vulnerability
detection in smart contracts accounts for the fact that, in real
life, a single contract may have more than one vulnerability.
Indeed, as stated in Section I, we focus on a multi-label clas-
sification task, and approximately 40% of all the elements in
our training set are part of two or more classes. Table I shows
the number of contracts our training set has per vulnerability
class and the percentage of the contracts in that class that
also have one or more other vulnerabilities. It is possible
to notice how the elements in class safe do not belong to
any other class, while we have widespread overlapping for
all the other labels. It is also important to point out how the
classes are strongly unbalanced, with unchecked-calls,
safe and reentrancy the most populated classes, while
the access—-control vulnerability is only present in about
11k smart contract, making it the minority class.

TABLE I
NUMBER OF ELEMENTS PER CLASS IN THE TRAINING SET, ALONG WITH
THE PERCENTAGE OF CONTRACTS OF THAT CLASS THAT ALSO HAVE
OTHER VULNERABILITIES

Vulnerability Contracts  Multi-label Contracts (%)
unchecked-calls 36353 7232 %
safe 27036 00.00 %
reentrancy 24161 91.51 %
other 20993 84.17 %
arithmetic 13530 77.05 %
access-control 11704 87.27 %

Once we have our dataset of labeled contracts, we can use
the bytecode to produce an RGB image with a procedure
similar to what is done in [9]: suppose we have the piece of
bytecode 606080, then in the RGB image, the three channels
will be (R:60, G:60, B:80). Some of the images produced with
this technique are shown in Figure 1. Note that when passing
them as input to our CNNs, we center crop and resize them
to achieve a single image size.

Fig. 1.

Examples of results obtained from transforming smart contract
bytecodes into RGB images.

B. Models

We experimented with four deep neural networks architec-
tures:



o two traditional 2D CNNs, namely ResNet-18 and Incep-
tion v3, both working on RGB images corresponding to
contract bytecode (generated as described above);

e« a 1D CNN applied directly to the contract bytecode,
which was treated as a signal and normalized to be
between -1 and 1;

¢ a baseline Long Short-Term Memory (LSTM) model,
which was trained only on the sequences of opcodes in
the contract bytecode.

More details about each of these architectures are given below.

1) LSTM baseline: This is a simple network composed
of an Embedding layer, which was trained from scratch to
produce an embedding for each opcode, three stacked bidirec-
tional LSTM layers [25], and two linear layers that served as
the classification head. These linear layers took as input the
concatenation of the final hidden states of the last forward and
backward LSTM and computed the prediction. Figure 2 shows
the complete network architecture.
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Fig. 2. LSTM baseline architecture

2) Conv2D models: We used two common 2D CNN models
from the computer vision literature, specifically, ResNet-18
[26], and Inception v3 [27]. According to the literature, the
ResNet model was chosen as a baseline convolutional model,
while the Inception network was selected since it provides
good results in malware detection and classification. Both
models were not trained from scratch but initialized from
ImageNet weights. Indeed, literature on malware classification
[28] showed that this pre-training is beneficial and improves
performance even on domains that are quite different from the
natural images in ImageNet.

3) ConviD model: Finally, some literature [8], [29] sug-
gested that 1D convolutions may be a good fit for this task.
Indeed, traditional 2D CNNs are structured so that the shallow
layers capture low-level features, which then get aggregated
into high-level ones in subsequent layers. However, the useful
patterns to detect code vulnerability are most likely low-level
pixel-by-pixel ones. In practice, as the network grows deeper,
we tend to lose some of the pixel-level information. As a
result, the semantics and context of the smart contract can
be destroyed. At the same time, applying 1D convolutions
over the contract bytecode used as a signal (i.e., not reshaped
as an RGB image) may be a better strategy to maintain this
information.

Thus, we also implemented a ResNet-inspired 1D CNN.
Figure 3 shows how we defined the 1D ResBlock, while Figure
4 shows the architecture as a whole.
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Fig. 3. 1-dimensional residual block

IV. RESULTS

We tried different training configurations for every model
type varying: the learning rate, the eventual 12 penalty, the
optimizer (Adam or SGD), the statistics (mean and standard
deviation) used when normalizing RGB images (either com-
puted ad-hoc or taken from ImageNet), which layers were
fine-tuned and which, if any, were kept fixed, the loss (either
binary-crossentropy or focal loss), and the use of class weights.

The ResNet-inspired 1D CNN achieved the best perfor-
mances. Since this architecture was only inspired by the
literature, no pre-trained (ImageNet) weights of the model
were available. Thus, the model was trained from scratch, and
the signal was normalized between -1 and 1. We employed
an SGD optimizer with a learning rate set to 0.001 and
an L2 penalty of 0.0001, applied only on convolutional and
dense layer weights, as commonly done in computer vision
applications [30]. Finally, the optimized loss for this model
was binary-cross-entropy, and — even though class weights
are a common way to try and improve performances in case
of strongly unbalanced classes — in our case, we found the
performance to be better without them. Table II reports the
best results we could achieve on the validation set for every
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architecture. In this context, where every element can be in
more than one class, and the class labels are not balanced,
accuracy is not an ideal metric. Indeed, we also consider a
micro-averaged version of the F1 score, which aggregates the
contributions of all classes to compute the average metric and
thus treats the examples of each class with equal weight.

TABLE 11
MODELS’ RESULTS ON THE VALIDATION SET

Model name Accuracy Micro F1
ResNet1D 0.7353 0.8381
ResNet 0.6841 0.7928
Inception 0.6988 0.8015
LSTM Baseline  0.6934 0.7953

From Table II, we can see that the LSTM baseline obtains
poor results. This is probably because we cut the bytecode to
just 512 opcodes due to limited memory and computational
resources. However, our analysis shows that most bytecodes
have a length of about 5000 opcodes, meaning that the portion
we use probably corresponds to only a tiny first portion of the
contract code.

2D CNNs have the advantage of not requiring the input to
be truncated in any way: we first create the images using all
the bytecode and then resize them as needed. However, their
performance is comparable to our baseline, indicating that they
may not be ideal for this task. This might seem surprising,
as we saw them successfully employed in malware detection;
however, we should note that malicious code patterns in that
domain are usually quite big and easy to detect, even to
the human eye. By contrast, patterns for code vulnerability
detection in Solidity may only be at the level of a small
sequence of opcodes.

The 1D CNN again requires the input to be cut off, but the
network’s nature lets us use a larger maximum length of 16384
(corresponding to a flattened 128x128 image). As shown in
Table II, this architecture is the one that achieves the best
results.

We show in Figure 5 the confusion matrices relative to
the performance of our best model (i.e., ResNetlD) on the
test set. The class unchecked-calls has significantly few mis-
classified examples, while the percentage of errors increases
when we consider the other classes. This result was predictable

since unchecked-calls are a vulnerability in more than 35k of
the original train contracts (majority class). Among the other
classes, a notable percentage of false negatives was experi-
enced for classes with fewer training examples, i.e., access-
control and arithmetic. Finally, classes others and reentrancy
have approximately the same number of samples in the train
set. However, the first one is mis-classified a lot more: this is
due to the inherent nature of this class, which groups all the
interesting vulnerabilities that are not part of the other four
classes. This variety may indeed generate some confusion for
the detector.

V. CONCLUSIONS

This paper showed that deep learning techniques could be
a viable tool for identifying and classifying smart contract
code vulnerabilities. Based on the dataset we built (and made
available), we have trained and tested four different neural
network architectures. Using the aforementioned dataset, we
then approach the problem of vulnerability classification as
a problem of multi-label classification: this is quite different
from previous works, which focused either on vulnerability
detection (i.e., the binary problem of detecting whether the
contract is safe or unsafe) or on single-label vulnerability
classification, meaning that each contract can only belong to
one vulnerability class. Results show that, according to our
configuration based on the available computational capabil-
ities, the 1D ResNet CNN working on the smart contract
bytecodes can provide the best results in terms of accuracy
and Micro F1.

Our study can be considered a starting point for several
future works. Indeed, to the best of our knowledge, the dataset
we made available can be employed for several other types of
tasks, i.e., Solidity code generation, vulnerability classification
from source code, etc. Moreover, the dataset is constructed so
that every unsafe smart contract can be in one or more vul-
nerability classes. This closely reflects the real world, where
a single smart contract can open to several potential threats.
We plan to continue this study by comparing the considered
architectures, which according to state of the art are among the
best ones for this purpose, with other classification methods
available in the literature. Moreover, due to the extensive
computation requirements needed to deploy effective machine
learning models, we plan to perform more comprehensive tests
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Fig. 5. Per-class confusion matrices obtained by ResNetlD on the test set

over more powerful servers that would allow us to tune the
employed networks better.
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