
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 99.9999/ACCESS.9999.DOI

Accountable Clouds through Blockchain
MIRKO ZICHICHI1, GABRIELE D’ANGELO2,5, STEFANO FERRETTI3 (Member, IEEE),
MORENO MARZOLLA4,5
1Ontology Engineering Group, Universidad Politécnica de Madrid, ETSIINF Campus de Montegancedo s/n, Boadilla de Monte, 28660 Madrid, Spain (e-mail:
mirko.zichichi@upm.es)
2Department of Computer Science and Engineering (DISI), University of Bologna, Mura Anteo Zamboni 7, 40126 Bologna, Italy (e-mail: g.dangelo@unibo.it)
3Dipartimento di Scienze Pure e Applicate (DiSPeA), University of Urbino Carlo Bo, Piazza della Repubblica 13, 61029 Urbino, Italy (e-mail:
stefano.ferretti@uniurb.it)
4Department of Computer Science and Engineering (DISI), University of Bologna, Mura Anteo Zamboni 7, 40126 Bologna, Italy (e-mail:
moreno.marzolla@unibo.it)
5Center for Inter-Department Industrial Research ICT, University of Bologna, 40126 Bologna, Italy

Corresponding author: S. Ferretti (e-mail: stefano.ferretti@uniurb.it).

ABSTRACT We present a solution for accountability in Cloud infrastructures based on blockchaina. We
show that, through smart contracts, it is possible to create an unforgeable log that can be used for auditing
and automatic Service Level Agreement (SLA) verification. As a practical case study, we consider Cloud
storage services and define interaction protocols for registering the outcome of each file operation in the
blockchain. We developed a prototype implementation that runs on the GoQuorum, Hyperledger Besu,
and Polygon blockchains, using different consensus protocols. Using a dedicated testbed, we discuss the
performance of our implementation in terms of latencies, error rates and gas usage. Results demonstrate
the viability of our approach over permissioned blockchains, with better performance for the Polygon
and GoQuorum Raft decentralized systems. Our implementation enables interoperability, given that it is
supported by the Ethereum Virtual Machine which currently is underlying several blockchain platforms.

aAn early version of this work appeared in [1]. This paper is an extensively revised and extended version where more than 50% is
new material.

INDEX TERMS Blockchain, Smart Contracts, Cloud Computing

I. INTRODUCTION

Cloud computing is a well-established paradigm for provid-
ing computation and storage resources according to a “pay
as you go” model. In Cloud computing, service providers
own computing resources and provide remote access to those
resources to customers for a fee [2].

The level of abstraction at which a customer interacts with
a Cloud infrastructure is defined by the service model. In
a Software as a Service (SaaS) Cloud, customers are provided
with application services running in the Cloud infrastruc-
ture. “Google Workspace” and “Microsoft Office Online”
are examples of widely used SaaS Clouds. A Platform as
a Service (PaaS) Cloud provides programming languages,
tools, and a hosting environment for applications developed
by the customer. Examples of PaaS solutions are AppEngine
by Google, Force.com from SalesForce, Microsoft’s Azure,
and Amazon’s Elastic Beanstalk. Finally, an Infrastructure
as a Service (IaaS) Cloud provides low-level computing
capabilities such as processing, storage, and networks where
the customer can run arbitrary software, including operating

systems and applications. Amazon EC2 is an example of IaaS
Cloud.

The mode of operation of a Cloud defines its deployment
model. A Private Cloud is operated exclusively for a cus-
tomer organization; it might be managed or owned by that
organization, although this is not required. A Community
Cloud is shared by several organizations and supports a
specific community with common concerns (e.g., regulatory
requirements). A Public Cloud is made available to the
general public and is owned by an organization selling Cloud
services. Finally, a Hybrid Cloud is built upon a combination
of private, public, and community Clouds.

Cloud computing allows separation between construction
and operation of the infrastructure and providing end-user
services. This opportunity enables the existence of at least
three categories of providers and users: (i) the provider of
Cloud resources, (ii) the provider of services implemented
upon these resources, and (iii) the customer of these services.
Although providers and customers could be the same (e.g., in
the case of Private Clouds), in most cases, they are different

VOLUME 4, 2016 1

Zichichi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

entities. This implies that customers have no control over
the resources they use: a common joke is to replace “Cloud
computing” with “other people’s computers” so that the
sentence “storing data in the Cloud” becomes “storing data
on other people’s computers”.

The lack of direct control over the Cloud infrastructure is a
serious concern for some users, e.g., those subject to regula-
tory obligations or handling sensitive information. The legal
implications of sending data and computation to a third party
located in a different country with a different data protection
legislation are still a gray area [3]. It is essential to recognize
that these are old problems arising in a new context: for
example, moving the production of goods to other countries
may require the transfer of valuable information (e.g., chip
design, special production techniques) to a legal context that
may differ strikingly from that of the owner company.

The separation between resource providers and customers
introduces a problem that is not unique to Clouds, as every
service provider faces it: if something goes wrong (e.g.,
data is lost, or the computation returns an incorrect result),
how do we determine whether the customer or the provider
caused the problem? As an example, consider the following
scenarios:

Scenario 1
Company A offloads its customer-facing application to a
Cloud provider B. Suddenly, A’s application crashes, and
customers complain with A, asking for compensation. In
turn, A accuses the Cloud provider B of the caused service
unavailability. However, B asserts that its infrastructure was
operating correctly during service unavailability, thus sug-
gesting that the problem was at the software level, i.e., A’s
application fault.

Scenario 2
Company A stores important data on a Cloud operated by B.
At some point, some data is found to be missing. A blames B,
who claims that the missing data have never been uploaded.
(An alternative scenario is that B asserts that the data have
been deleted upon explicit request by A).

Cloud providers offer services on an as-is and as-available
basis, subject to terms and conditions that disclaim any
responsibility no matter what. For example, Microsoft’s Ser-
vice Level Agreements (SLAs) for online services contain a
clause according to which the entity that decides on client-
initiated disputes is the service provider (i.e., Microsoft)
itself1:

We [Microsoft] will evaluate all information
reasonably available to us and make a good faith
determination of whether a Service Credit is owed.
We will use commercially reasonable efforts to
process claims during the subsequent month and

1https://www.microsoft.com/licensing/docs/view/
Service-Level-Agreements-SLA-for-Online-Services, Accessed on
2022-11-25

within forty-five (45) days of receipt. You must be
in compliance with the Agreement in order to be
eligible for a Service Credit. If we determine that
a Service Credit is owed to you, we will apply the
Service Credit to your Applicable Monthly Service
Fees.

Having the service provider make “a good faith determina-
tion” about SLA violations is far from satisfactory. Amazon
Web Services is even more dismissive: their general customer
agreement2 denies any compensation for a broad range of
failures, no matter what, so that there is no need to decide
who’s to blame:

[...] Neither we nor any of our affiliates or
licensors will be responsible for any compensation,
reimbursement, or damages arising in connection
with: [...] d) any unauthorized access to, alteration
of, or the deletion, destruction, damage, loss, or
failure to store any of your content or other data.

Clauses like those above are common in the Information
Technology world, since they favor the party that defines
them (i.e., the service providers). There is, however, an
objective problem in resolving disputes in the absence of
solid evidence, so it is no surprise that SLA are as forgiving
as possible, ultimately limiting the adoption of Cloud tech-
nologies.

All these issues might be addressed by adding accountabil-
ity to Cloud services [4]–[8]. Indeed, an accountable Cloud
would be capable of attributing actions and transactions to
specific entities, thus adding responsibility to the functional-
ities and behavior of all actors involved in the Cloud service
applications.

So far, accountability in distributed systems has relied on
a trusted third party or to tamper-proof hardware devices [9].
Neither of these is desirable because, in both cases, trust is
assumed rather than derived from verifiable system proper-
ties.

In this paper, we argue that blockchain technology can ad-
dress the accountability problem in Cloud infrastructures. To
support this claim, we have developed a prototype component
responsible for logging events in a distributed, unforgeable
event log. The log contains the sequence of interactions be-
tween a customer and the service provider and can be used to
settle disputes if problems arise. Additionally, the blockchain
allows the implementation of smart contractsthrough which
it might be possible to write programs that can negotiate and
verify the fulfillment of SLAs. Moreover, an effective use
of a blockchain-based system, such as the one we present
in this work, can help auditors implement an integrated
and automated audit framework that enhances the efficiency,
effectiveness, and quality of Cloud operations. Indeed, such
a system would enhance auditing with COSO, COBIT, and
ISO Control Frameworks [10].

The main contribution of this paper is as follows:

2https://aws.amazon.com/agreement/ Section 11; Accessed on 2022-11-
25

2 VOLUME 4, 2016

Zichichi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

• We provide a protocol that, based on blockchain tech-
nologies, allows us to build an unforgeable log for
Cloud accountability. The blockchain allows tamper-
proof logging of events to verify if Cloud Service Level
Agreements are violated.

• We implement our protocol through a smart contract set
in Solidity. Our solution, concerning state of the art,
is supported by the Ethereum Virtual Machine, which
is currently used by several blockchain-based systems.
Thus, this design choice enables interoperability over
multiple blockchain platforms.

• We deploy and test our implementation over differ-
ent blockchain platforms, i.e., GoQuorum, Hyperledger
Besu, and Polygon, and different consensus protocols.
Results demonstrate the viability of our approach, with
better performance for Polygon and GoQuorum Raft.

This paper is organized as follows. In Section II, we
provide some background on Cloud computing, blockchain,
and smart contracts. In Section III, we highlight some of
the challenges and requirements of accountable Clouds. Sec-
tion IV investigates how blockchain-based technologies can
enforce accountability in a case study dealing with a cloud-
based storage service. Section V describes an actual imple-
mentation of the proposed system, whose performance is
experimentally evaluated in Section VI. Finally, conclusions
and future research directions are discussed in Section VIII.

II. BACKGROUND
To make this paper self-contained, we provide some back-
ground on Cloud computing infrastructures, accountability,
blockchain technology, and smart contracts.

A. CLOUD COMPUTING
The main characteristics of a Cloud environment are [11]:

• On-demand self-service: the ability to provide resources
(e.g., CPU time, network storage) as needed [12], [13];

• Broad network access: resources can be accessed
through the network [12];

• Resource pooling: virtual and physical resources can be
pooled and assigned dynamically to consumers using a
multi-tenant model [13];

• Elasticity: dynamic provision of resources to enable
customer applications to scale up and down [12], [13];

• Measured service: resource and service usages are opti-
mized through a pay-per-use model [5], [14].

B. ACCOUNTABILITY IN CLOUD COMPUTING
The importance of accountability in distributed systems in
general [15], [16] and Cloud computing in particular [5],
[17]–[22] has already been recognized. In [5] the author
discusses the requirements for achieving accountability in
clouds through tamper-evident logs: completeness (all SLA
violations are eventually reported), accuracy (no violations
are reported if the SLA is not violated), and verifiability (a
third party can independently verify all reported violations).

To realize an accountable Cloud based on trusted logs, it
is necessary to decide what to log and how to log. We
consider “how” first. Logging must guarantee fairness and
non-repudiation, ensuring that the misbehavior of others does
not disadvantage well-behaved parties and that no party
can subsequently deny their participation. It should enable
tracing back the causes of an “incident” (i.e., a behavior that
is not SLA compliant) after it has occurred. Cloud providers
and customers require protection for each other’s actions,
with all assurances rooted on an independent source of trust.
For example, there should be a user-verifiable assurance
that the data, applications, and services they deploy in the
Cloud are secure even against impairment by Cloud system
administrators. As concerns “what” to record, Cloud com-
puting creates new relationships between an organization and
third-party Cloud service providers. The general scenario is
that Cloud services could be arbitrarily complex. Providers
will offer their services to consumers with specific Quality
of Service (QoS) attributes, such as reliability and security,
under specific terms and conditions [14]. Most of the existing
research on SLA management focuses on computational and
algorithmic aspects of QoS monitoring and provisioning.
Specifically, considerable effort has been spent developing
proactive or reactive algorithms for allocating the appropriate
number and resources needed to meet a set of QoS require-
ments. However, SLA violations happen in practice, and it is
necessary to deal with them. Currently, the handling of SLA
violations is entirely based on “out of band” negotiations
between service providers and customers since the systems
being monitored cannot provide legal evidence of malfunc-
tions (or lack of). What is needed is a framework or a set
of technologies that enable the creation of SLA clauses in
a machine-readable form, such that users can be assured of
their effective enforcement in the event of a violation. The
blockchain’s transparency and immutability and the smart
contracts’ automation have already been proposed to deal
with SLA violations in Cloud services. However, such so-
lutions still need to be thoroughly studied and evaluated [23].

In [1], the authors introduced the problem and proposed
an initial blockchain-based solution that needed to be imple-
mented and evaluated in terms of performance (e.g., scalabil-
ity). A partially overlapping problem is discussed in [24], in
which the authors explore the usage of blockchains to support
cloud exchanges (i.e., marketplaces for cloud services). QoS
and SLA violations are relevant topics for cloud exchanges
that need specific and trusted solutions. On the other hand,
in [25] the authors present an accountable cloud data storage
that, similarly to our work, is implemented using Ethereum
smart contracts. The difference with our work is that their
evaluation focuses only on off-chain operations related to
data storage, and only the gas usage is measured regarding
on-chain operations. Additionally, we test the performance
of three different blockchain implementations.

Another partially overlapping problem is data accountabil-
ity, in which the goal is to obtain unified control and assign
responsibilities to the operation on data hosted on a cloud

VOLUME 4, 2016 3

Zichichi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

infrastruture. Also, in this case, a solution based on cloud-
blockchain fusion [26] can be implemented. Worth of notice
is also the work presented in [27], since it is one of the first
works that integrates a blockchain with a cloud system to
provide accountability. However, both solutions [26], [27]
are limited to the Hyperledger Fabric blockchain and are
not interoperable with blockchains based on the Ethereum
Virtual Machine.

C. BLOCKCHAIN AND SMART CONTRACTS
Distributed Ledger Technologies (DLT) consist of networks
of nodes that maintain a single ledger and follow the same
protocol for appending information to it. The blockchain is a
type of DLT where the ledger is organized into blocks, and
each block is sequentially linked to the previous one [28].
The execution of the same protocol, i.e., source code, guaran-
tees (most of the time) the property of being tamper-proof and
not forgeable. This allows a trust mechanism to be created
without the need for third-parties [29]. The untampered data
availability makes DLT a promising tool for developing new
types of applications where immutability and transparency
are requiremed. Examples of these applications can be found
in general-purpose blockchains [30]–[32].

There are different implementations of DLTs, each with
its pros and cons. Permissionless DLTs are systems in which
anyone can participate in the consensus mechanism. Permis-
sioned DLTs, on the other hand, have a privileged set of nodes
that are authorized to execute the consensus mechanism. In
both cases, the full ledger can be either private or accessible
by anyone, i.e., public. Another distinction lies in the support
for smart contracts, a feature that quite often has a negative
impact on the system scalability and responsiveness [30].
In fact, DLTs that are believed to provide better scalability
often lack support for smart contracts. To address this issue,
IOTA [33] implements a more scalable solution for distribut-
ing the ledger.

A smart contract is a program, in compiled or source
form, that is deployed in a DLT environment [34]. The pro-
gram is executed deterministically by different participants in
the DLT with the same inputs, and therefore must produce the
same results. When a smart contract is deployed on the DLT
and the issuer is confident (e.g., by reviewing the code) that
the code embodies the intended behavior, then transactions
originating from that contract can be considered “trusted”
without requiring the presence of a third party. This principle
is based on the assumption that most DLT nodes are honest
and follow the same protocol.

However, smart contracts are usually isolated from the
outside world, e.g., they cannot contact a website, in order to
ensure that execution is more resistant to attacks with a higher
degree of certainty [31]. This limits the possibilities of using
these technologies, given that many applications require real-
time information from the outside world. In this context,
oracles assist DLTs in enabling smart contracts to operate
in the real world by flowing data from services external to
the DLT [35]. They act as a bridge, providing the ability to

retrieve, verify and digest data into smart contracts. Their off-
chain execution can be centralized, i.e., from a single source,
or decentralized, based on the consensus of a multitude of
sources.

An exciting aspect of smart contracts is their ability
to be self-enforcing in verifying the fulfillment of SLA
agreements. Smart contracts allow the formulation of sets
of machine-readable rules from service contracts, therefore
transforming rules that are typically written in “legal-ese”
into software programs. In our scenario, smart contracts
might contain two kinds of contractual clauses: (i) terms
and conditions and (ii) SLAs. Terms and conditions are con-
cerned with rights, obligations, and prohibitions to perform
a particular action; whereas SLAs are concerned with rights,
obligations, and prohibitions to maintain a given service in
a particular state. Smart contracts allow the definition of
computational procedures for monitoring and detecting rule
violations. This can be accomplished by recording service
interactions at a granularity that is sufficient for checking if
they comply with the rights (permissions), obligations, and
prohibitions stipulated in contract clauses and tracing the
causes of violations.

III. OVERVIEW OF CLOUDSLA
This section presents CloudSLA, a protocol that builds a
trusted, tamper-proof log of actions executed in a cloud
service through blockchain technologies. These interactions
are represented as transactions recorded in the blockchain.
Through smart contracts, all parties can check the trusted log
and find and resolve disputes arising from SLA violations.

When API calls involve transferring a large amount of data
(e.g., a file upload), cryptographic hashes are used in order
not to store too much information into the blockchain. There
are no particular constraints on the Cloud APIs under consid-
eration: instantiating a virtual machine, uploading, deletion,
or modification of files, and accessing a given resource, are
all examples of events that can be recorded. All these events
are notified in the blockchain by the entity invoking the
request (the end user or a delegate) and/or by the entity
receiving the request (the Cloud provider). The rationale is
that recording all the involved parties’ activities can help
reveal the causes of a SLA violation.

In the rest of this paper, we consider a specific use case for
implementing a Cloud storage service for data archival and
backup, similar to Amazon Glacier. The service exposes the
following Application Programming Interface (API):

• Upload(f, c): Upload a file with unique identifier f
and content c; if a file with id f already exists, its content
is overwritten;

• Delete(f): Delete a file with id f ; if the file does not
exist, this operation does nothing;

• c ← Read(f): Return the content c of the file whose
id is f ; if the file does not exist, return the special value
Nil.

We assume the existence of some authorization/authentication
mechanism that allows users to access only the files that they

4 VOLUME 4, 2016

Zichichi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

are allowed to. We also assume that the User encrypts each
file before uploading it to the Cloud. The Cloud should not
be able to decrypt any user-generated content, to prevent a
class of insider threats.

The blockchain can be used following a notary scheme: let
us assume that the provider fails to deliver a data block x
requested by the user, or that the delivered data is differ-
ent from what is expected. In this case, inspection on the
blockchain can reveal whether the provider lost x or some
updates to x, or the user has deleted or never uploaded x (or
some modifications to x).

Another classic SLA example is: “99% of transactions
during a daily activity must have a response time below
a certain threshold t”. This SLA can be safely monitored
if we assume the presence of a (third) trusted component
that logs response times and can audit (virtualized) resource
usage [36]. In practice, self-enforcing smart contracts should
be coupled with specific oracles to monitor response times
and, based on the SLA, pay the damaged entity (more often,
the customer) accordingly.

A similar strategy could work as well to monitor SLAs
stipulated in terms of adequate resource capacities provided
by the Cloud, rather than applications-specific performance
metrics [37]. Thus, CloudSLA would allow checking if the
Cloud provider allocated the proper amount of resources,
e.g. processing and storage capacities, RAM, and middleware
software.

As a concrete example, let us consider a customer who up-
loads some content on a Cloud storage service. For simplic-
ity, let us assume that the content is a file (similar reasoning
would apply to data chunks or other kinds of information). In
the following, the customer wants to be sure that the uploaded
files are not removed or altered by the Cloud provider. This
can be obtained by using different execution architectures:

1) blockchain-based double signed transactions;
2) blockchain-based logging without smart contracts;
3) blockchain-based logging and smart contracts.
Double-signed transactions are signed by multiple parties,

and can be used to certify that a transaction has been agreed
upon by both the customer and the cloud provider. Double-
signed transactions are simple to use and require a low
overhead since they can be realized with few interactions. On
the other hand, this approach would provide a coarse-grained
representation of the interactions between the user and the
cloud, because double-signed transactions certify whether
the parties agree on something. This all-or-nothing result can
be quite limiting since it relies on the two parties to agree.

Blockchain-based logging (without smart contracts) al-
lows the recording of all interactions between the User and
the Cloud. In the case of SLA violations, each party can
trigger a verification by a third entity (e.g., an arbitrator) to
identify who is responsible for such a violation. It is worth
noting that, in this architecture, the arbitrator is not required
to have been involved in any previous interaction with either
the User or the Cloud since it can use the information publicly
provided by the blockchain to determine the responsibilities.

FIGURE 1. Cloud Service Level Agreement environment interactions.

Another option is to employ a smart contract acting as the ar-
bitrator. In this approach, the smart contract verifies all events
stored in the blockchain, identifying SLA violations, and
calculates compensations if necessary. The main advantage
of this approach is that no third party needs to be involved
in resolving disputes. In particular, since the content of the
smart contract can be accessed by both parties, they can
verify its correctness before agreeing to its terms. In other
words, the trust of the User and the Cloud provider is on the
smart contract (that can be inspected and verified), following
the notion that “code is law”.

IV. SMART CONTRACTS FOR CLOUD SERVICE LEVEL
AGREEMENTS
In this section we describe a smart contract that leverages
blockchain-based logging for monitoring SLA violations of
functional requirements of the file storage case study. The
CloudSLA smart contract can help attribute SLA violations
to the appropriate party for the following three operations:
upload, delete, and read. We assume that the following active
entities are involved (see Figure 1): User, Cloud provider,
CloudSLA smart contract, and Monitor (i.e., an oracle).

For simplicity, we consider the blockchain as a passive
entity that receives and stores events generated by active
entities (User and Cloud). However, in the following discus-
sion, we might state that an entity, say the Cloud, receives
a transaction from the blockchain. This is a simplification to
state that the blockchain network nodes reached a consensus
on a transaction that includes a smart contract event triggered
by the execution of a method while the Cloud was listening
for such events.

It is important to remark that the assumptions above are
only intended to simplify the discussion. In other words, they
are not needed for guaranteeing the correctness of the pro-
posed approach. The proposed system can operate correctly
by adhering to nothing more than the usual development

VOLUME 4, 2016 5

Zichichi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

practices employed in common DLT-based systems.

A. SMART CONTRACT OPERATION
The CloudSLA smart contract is the on-chain representation
of a SLA contract. CloudSLA includes most of the informa-
tion that builds up the agreement between a User and a Cloud
provider. The operations enabled by this smart contract are
described below.

FIGURE 2. UML sequence diagram for the interactions involved in the file
upload operation.

1) Upload
Figure 2 shows the behavior of the involved entities when the
User uploads a file. What follows is the description of the
Upload operation execution.
(a) Before transmitting the file to the Cloud, the User starts

the upload operation using the smart contract method
UploadRequest(). This method registers the upload re-
quest in the blockchain (arrow a in the diagram). It takes
as input a filepath, i.e., a unique identifier by which the
Cloud identifies a user’s file in its storage. The identifier
will be stored in the blockchain ledger, so it should not
convey any information that could reveal its content or
true location. The UploadRequest() function also takes
as input a challenge [38], which consists of the hash
digest of the file’s hash digest, i.e., the result of executing
the hash function twice, one after the other, on the file.
This is done to hide the hash of the content so that it
can be verified (by the smart contract) once the Cloud
has uploaded the file. This is sometimes called “hash
masking”.

(b) Once the Cloud receives the transaction, including the
upload request event from the blockchain, it can accept
such a request by issuing an upload ACK message to
the User through the invocation of the method Upload-
RequestAck().

(c) Once the User receives the transaction, including the
upload ACK event, it can start the data upload to the
Cloud.

(d) Once the upload finishes, the Cloud logs the success of
this operation with a new transaction; in this transaction,
the Cloud invokes the UploadTransferAck() method
that stores the file’s hash digest in the blockchain.

(e) Finally, the previous method invokes the UploadCon-
firm() method, (arrow e), which uses the file’s hash digest
provided by the Cloud as a response to the challenge set
previously by the User. This method executes the hash
function on the file’s digest and checks the result with
the data provided by the User. This operation confirms
or rejects the hash digest published by the Cloud. If
rejected, then the Cloud should delete the received file.

Through these steps, anyone can verify the correctness of the
uploaded file by checking the digest provided by the Cloud
and the related confirmation by the User. Recall that anyone
who has access to the blockchain can check what the Cloud
and the User stored, and thus he/she can understand if one
of the two parties did not behave correctly. Moreover, the
automatic execution of the smart contract challenge-response
method enables file integrity validation and the possible re-
jection of the upload operation. This might not be considered
a violation since there could have been some transmission
issues not due to the Cloud.

Analysis.
Upon registration of message e (Upload Confirm), the fol-
lowing properties are guaranteed:

1) Neither the User nor the Cloud provider can claim that
no upload was requested; indeed, the User stored a
publicly-visible upload request on the blockchain (re-
quest a), that the Cloud acknowledged with message b;
if the Cloud was unavailable right after message a, e.g.,
because it was down, it can nevertheless see the request
from the blockchain as soon as it is operational again;

2) Neither the User nor the Cloud provider can claim
that no file was transferred; indeed, an explicit upload
transfer ack d, containing the file hash digest, is stored
in the blockchain. The User can verify the correctness of
the hash and repeat the upload in case of mismatch; the
has must match the one from the initial upload request
a.

FIGURE 3. UML sequence diagram for the interactions involved in the file
delete operation.

2) Delete
The interactions required to delete a file from the Cloud are
shown in Figure 3. What follows is the description of the

6 VOLUME 4, 2016

Zichichi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Delete operation execution.
(a) The User issues a delete request by invoking the

DeleteRequest() method with a filepath parameter.
(b) The Cloud receives the delete request event and deletes

the file. The Cloud acknowledges the completion of
the request by registering the event into the blockchain
through the method Delete().

After these operations, future disputes on the presence or
absence of a file can be resolved by looking at the log. If
the User requests a file not present in the Cloud, the smart
contract automatically verifies whether the User previously
requested deletion for that file. If such a request is present,
the Cloud correctly deleted that file; if no delete request was
logged for that file, there is a SLA violation. Furthermore,
if the Cloud is found to have a copy of a file for which a
successful and legit delete request is in the blockchain, then
the Cloud would again be in violation of SLA since it did not
correctly remove the file as requested.

Analysis.
Upon registration of message b (Delete), neither the User nor
the Cloud can claim that no delete operation was actually
requested, since a publicly visible request a was stored in
the blockchain. Furthermore, neither the User nor the Cloud
can claim that the delete operation failed, due to the acknowl-
edgement b being stored in the blockchain as well.

FIGURE 4. UML sequence diagram for the interactions involved in the read
request operation. Note the two branches that describe the behavior
depending on the file’s existence.

3) Read
Figure 4 shows the interactions required to read a file stored
in the Cloud. What follows is the description of the Read
operation execution.

insane

(a) In order to access a file, the User issues a transaction in
order to invoke the ReadRequest() method, providing
as input the filepath.

(b) To give access to the file, the Cloud invokes Read-
RequestAck() and inserts into the blockchain an URL,
where the file can be retrieved3. This procedure is re-
quired to witness that the Cloud has granted access to
the User and that the file is valid.

(c) Finally, the User can read the file through the URL
provided by the Cloud.

(b∗) When the file specified in the request is missing, the
Cloud responds with a missing message by invoking
ReadRequestDeny().

(c∗) To assess if there is a SLA violation the User executes
the FileOnCloud() operation. This method analyzes the
smart contract storage that keeps track of the operations
and determines if a SLA violation has occurred

(d∗) The output of this process is stored on the blockchain.

Analysis.
After message a (Read request) is stored in the blockchain,
the expected outcome can be anticipated by checking the
log of all operations involving the same file that have been
previously stored there. In fact, the User can not held the
Cloud responsible for the unavailability of a file that the
User did not upload, since the Cloud can simply point to the
lack of a matching Upload operation on the publicly readable
log. Similarly, the Cloud can not held the User responsible
for the unavailability of a file that must indeed be present,
since the User can point to a previous Upload operation
not followed by any deletion request on the public ledger.
The basic principle is that the history of all interactions is
permanently stored in the blockchain in a tamper-resistant
way, so anyone can verify the availability (or lack of) of every
file at any point in time by simply “playing back” the log.

B. OFF-CHAIN MONITORING
At each execution of a method in the CloudSLA smart
contract, some operational and file integrity checks are au-
tonomously executed before the method can go through with
its implemented behavior. For instance, ReadRequest()
checks that a file has already been uploaded before instan-
tiating the request, and UploadTransferAck() checks the
file integrity. However, the CloudSLA smart contract cannot
directly read a file from the Cloud using the URL inserted
into the blockchain. This represents an off-chain operation
where the Monitor comes into play. The Monitor is an oracle
fetching data from, and providing data to, the blockchain.
We focus on three different scenarios where the Monitor is
needed:

Case 1 After a delete operation, the Monitor can check
if the Cloud still has a copy of the file that was
requested for deletion;

3Also in this case, hash masking can be used to provide privacy.

VOLUME 4, 2016 7

Zichichi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Case 2 After a read operation, the Monitor can check if
the Cloud has corrupted the content of the file, i.e.,
if the digest stored during the upload is different
from the digest of the data read back using a read
operation;

Case 3 After a read operation, the Monitor can check if the
Cloud replies with a “file not found” error, whereas
the file should be present because no deletion has
been requested.

FIGURE 5. UML sequence diagram for the interactions involved with a
monitoring request operation.

Figure 5 shows the behavior of the involved entities when
the User asks the Monitor to check a file. What follows is the
description of the Monitor check operation.
(a) First of all, the User requests to start a check operation

using the smart contract method DigestRequest(). This
operation registers the request to fetch a file from the
Cloud and obtain its digest in the blockchain. It takes as
input the URL of the file.

(b) Once the Monitor receives the transaction, including the
digest request event from the blockchain, it can accept
such a request by reading the file from the Cloud using
the provided URL.

(c) Once the Monitor reads the file and obtains its hash
digest, it can store the digest in the blockchain through
the DigestStore() method.

(d) Once the User receives the transaction, including the
Monitor’s digest store event from the blockchain, it can
invoke FileCheck() with a new transaction.

(e) Such FileCheck() method triggers some processing in
which the Monitor’s file digest is retrieved and compared
with the hash digest of the original file, stored earlier by
the Cloud during an upload operation. If the two digests
are different, there has been a violation of the SLA.
This violation falls into one of the three cases presented
above. Consequently, depending on the case, it may incur
into a sanction, automatically paid by the Cloud provider
through the smart contract (more details in the next sub-
section).

Analysis.
Similarly to the Upload and Delete request, the expected

result of a monitoring operation can be computed by anyone
that has read access to the blockchain by playing back the
sequence of operations involving the file under consideration.
The Cloud can not fabricate a fictitious Upload or Delete
operation on behalf of the User, since it is assumed that
the User’s credentials required to sign a transaction on the
blockchain are private. For the same reason, the User can not
fabricate a file Upload or Delete operation that did not happen
(the User can not sign a blockchain transaction without the
Cloud credentials). Finally, the Monitor can not alter the
result of a Digest Store operation (message c), e.g., by as-
serting that the content of a file is different from the expected
one, or that a file that should be there is not available, since
any deviation from the expected result can be independently
verified by anyone from the file hash that is included within
the previous file operations stored on the blockchain.

C. AUTOMATIC CREDITS SETTLEMENT
The distributed computation feature embodied by smart con-
tracts enables us to include an automatic credits settlement
mechanism into each operation in response to SLA viola-
tions. In particular, several blockchain implementations en-
able the creation of multiple second-layer assets. These assets
might represent different means of value exchange between
blockchain Users (an example being ERC20 tokens [32]).
In the case of a SLA, these assets can automatically handle
situations in which the Cloud is liable to the User due to a
violation. Some “credits” can be moved to the User account
directly on the chain and then redeemed for paying Cloud
services. Thus, upon SLA violations, credits are directly
moved to the User. For instance, when, after a read operation,
the Cloud has lost the file (Figure 4), then after the process
is stored on the blockchain (arrow d∗ in the same figure),
another smart contract method is invoked to move credits
from the Cloud to the User. For each type of violation, the
number of credits can be set up through the SLA during the
initialization phase.

D. THREAT MODEL AND LIMITATIONS
The solution above has been designed to fulfill the require-
ments of a specific threat model that will be briefly described
in this section. As usual, each threat model has limitations
that need to be carefully considered.

The entities that we consider in our security analysis are 1)
the User, 2) the Cloud, 3) the CloudSLA smart contract, and
4) the Monitor (i.e., the oracle).

In the proposed solution, the User and the Cloud can be
malicious. They may operate in a way that does not conform
to the SLA without paying for the prescribed compensations.
However, this malicious behavior is cushioned by automatic
penalty payments in smart contracts. On the other hand,
both the CloudSLA smart contract and the Monitor must be
trusted by both the User and the Cloud provider. Trusting
the smart contract should not be a problem since its source
code is available for review, and the contract itself runs on
a blockchain that both parties can assess. Vulnerabilities can

8 VOLUME 4, 2016

Zichichi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

be found in the smart contract and on the blockchain, but this
is common to all solutions that are based on smart contracts
and blockchains.

The situation is different when we consider the oracle
that, in the current proposal, is a centralized external service.
This component is mandatory and needs to be trusted by
the parties (without the ability to perform a preliminary
validation such as the one that can be done for the smart
contract). To address this concern, we are working on an
extension of this solution that involves a decentralized oracle
instead of a centralized one (see Section VII).

Even assuming the trust structure we described above, fur-
ther limitations must be considered. First of all, the proposed
architecture can not prevent the possibility for the Cloud
to create unauthorized copies of files. This should not be
an issue if the User adequately encrypts the content before
uploading it to the Cloud (as mandated by the proposed
solution) and securely manages the encryption keys. Our
Monitor implementation can detect this behavior if the Cloud
still exposes the copy to the public. Another relevant aspect
is that the Cloud could obtain some information on the User
behavior (or his data) by performing inference analysis on
the stored data and the User interaction patterns. Again, the
stored data is encrypted, and if extended privacy is required,
many mitigation techniques can be employed [39].

Finally, targeted attacks can be executed to reduce or nul-
lify the availability of both the CloudSLA smart contract and
the Monitor. Disrupting the availability of the smart contract
would require attacking the whole blockchain. On the other
hand, attacking the Monitor is again an issue in the presence
of a centralized oracle. In this case, a distributed oracle is
preferred. Another possible attack could aim to reduce the
smart contract’s ability (or the Monitor’s ability) to complete
some of the operations on the files to trigger improper SLA
violations and gain from the related compensations. Many
mitigation techniques can be implemented, but they are out
of the scope of this paper that aims for a general validation of
the proposed solution.

V. SOLIDITY SMART CONTRACT IMPLEMENTATION
This section discusses a prototype implementation of the
smart contracts described in Section IV. The implementa-
tion is written in Solidity, a language compatible with the
Ethereum Virtual Machine (EVM) that runs in the Ethereum
public blockchain as well as other public and private
blockchains. The source code is available on Github [40].

In the following, we first describe the software design
pattern used in our development, the implementation of the
main smart contract, and, finally, the implementation of the
oracle.

A. PATTERN
In our implementation, we use the factory pattern [41], a
software pattern for creating several smart contracts working
with the same logic. In particular, a single Factory smart
contract is deployed, which is in charge of instantiating

FIGURE 6. UML diagrams of the CloudSLA smart contract.

several “child” contracts with the same code. This enables
the creation of several SLAs between different Users and
the Cloud. The following components make up our Factory
contract (see the Factory contract in Figure 6):

• The Cloud address uniquely represents this entity on-
chain.

• A mapping of Users’ addresses to contracts’ addresses
representing the “children” of the Factory.

• The method createChild() for the creation of the men-
tioned child smart contracts. Each child contract (de-
scribed in the next Sub-Section): (i) is attributed to a
User using the User’s address; (ii) has a price value
indicating the User’s payment for the Cloud service; (iii)
has a SLA validity duration that starts when the child
contract is instantiated.

B. SERVICE LEVEL AGREEMENT SMART CONTRACT
The Service Level Agreement Smart Contract implements a
set of methods to execute the logging on-chain, namely the
log operations for Upload, Delete and Read. Moreover, it
implements a set of methods for checking the file integrity or
deletion status through an oracle. The following components

VOLUME 4, 2016 9

Zichichi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

make up our CloudSLA contract (see Figure 6):

• The contract attributes:

-- the addresses that uniquely represent (i) the opera-
tional oracle, (ii) the User, and (iii) the Cloud.

-- the list of files uploaded to the Cloud storage after
the SLA began (files mapping in Figure 6). In the
smart contract, a File is represented by: (i) a unique
filepath by which the Cloud identifies a file in the
User’s personal storage; (ii) an identifier obtained
by hashing the filepath; (iii) its presence on the
Cloud storage, i.e., if it has been deleted (onCloud
boolean in Figure 6); (iv) a state indicating the
actual request being executed on it, e.g., upload-
Requested, deleted, readRequestAck (states array
in Figure 6); (v) its hash digests, obtained using the
SHA256 function and/or other functions; (vi) URL
that is used to access the file externally through the
Cloud service.

-- the SLA information, namely (i) the price value the
User pays for the service, (ii) the credits accumu-
lated after a violation to be paid by the Cloud, (iii)
the start time (in UNIX time) and (iv) the end time.
Using the same smart contract, a structure named
Sla is used for instantiating a new SLA contract
when the previous one has been terminated.

• The methods for performing the Upload operation log-
ging are: (i) UploadRequest() to start the upload taking
in input the filepath; (ii) UploadRequestAck() invoked
by the Cloud; (iii) UploadTransferAck() invoked by the
Cloud after the file has been uploaded and indicating the
file digest; (iv) UploadConfirm() invoked by the User.

• The methods for performing the Delete operation log-
ging are: (i) the DeleteRequest() to delete the file in-
dicating its path; (ii) Delete() to provide a confirmation
by the Cloud.

• The methods for performing the Read operation logging
are: (i) ReadRequest() to read the file indicating its
path; (ii) ReadRequestAck() invoked by the Cloud
indicating the file URL; (iii) ReadRequestDeny() in-
voked by the Cloud indicating the file is not present.

• The methods for invoking a file check through a Monitor
are: (i) FileHashRequest() method requests a check to
the oracle smart contract indicating the filepath and the
file URL; (ii) the FileCheck() method executes a logic
after the oracle replied to the request, i.e., increment the
credit value if a violation, corrupted or undeleted file,
has been detected.

• Other methods for ending the SLA or enabling the
User to deposit an amount of the blockchain currency
equal to the price value for starting a new SLA. When
a SLA is terminated, the credit amount of currency will
be transferred to the User, while the remaining price
amount will be transferred to the Cloud.

C. FILE DIGEST ORACLE
The Monitor operation is implemented using an inbound
Oracle pattern. Generally, it can be seen as a unique smart
contract that receives requests on-chain and an off-chain
software component that listens to them and injects data into
the blockchain. In this particular instance, the injected data
consists of file hash digests. The following components make
up our File Digest Oracle contract:

• The Oracle provider (i.e., the Monitor) address uniquely
represents this entity on-chain.

• A list of requests, where each request includes a unique
id (obtained by hashing the file URL) and the expected
file hash digest.

• The DigestRequest() method for making the request,
invoked by the FileHashRequest() method on the
CloudSLA contract.

• The method DigestStore() invoked by the Monitor to
store the file hash digest that has been obtained by
reading the file at the URL indicated.

• The method DigestRetrieve() for obtaining the digest
stored by the Monitor, invoked by the FileCheck()
method on the CloudSLA contract.

VI. PERFORMANCE EVALUATION
We now evaluate the performance of a prototype implemen-
tation of the smart contract described in Section V. All smart
contracts have been deployed and tested on three different
blockchain environments. The source code and the raw re-
sults for the experiments described below are available on
GitHub [40].

We assume that the system would be deployed onto a per-
missioned blockchain. The reason is that public blockchains,
such as Ethereum, have known scalability issues [42] that
make them unlikely to handle the high request rate that a
Cloud demands. However, any EVM-based blockchain can
run our implementation, even if the blockchain is permission-
less.

A. CONFIGURATION SETUP
Our tests have been executed on three permissioned
blockchain environments, all supporting the Ethereum pro-
tocol and thus allowing the execution of smart contracts
compiled using Solidity. The first two environments are based
on the ConsenSys Quorum permissioned blockchain, while
the third is based on the Polygon framework for build-
ing Ethereum-compatible blockchains. In the following we
present the configuration setup.

The general configuration setup of the three permissioned
blockchains used in the performance evaluation is as follows:

• Each blockchain network is independently run on a
server with an Intel i7 CPU (12 physical execution
cores) and equipped with 16 GB of DDR4 RAM.

• Four validator blockchain nodes are deployed to create a
base network. Each node executes one of the consensus
mechanisms described above. The parameters for such

10 VOLUME 4, 2016

Zichichi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

a mechanism are configured using the recommended
values (see [43]).

• One non-validator node is used to expose the APIs for
external clients to interact with the blockchain.

• Several user nodes are created to interact with the net-
work.

• The blockchain “gas limit” is set to 16 234 336. In
Ethereum, the gas is a unit that measures the amount of
computational effort needed to execute operations. The
gas limit indicates the maximum amount of gas for a
block [42].

In the following, we describe the configuration setup for
the three permissioned blockchain environments.

1) GoQuorum
ConsenSys Quorum4 is an open-source protocol for build-
ing Ethereum-compatible environments for enterprises. It is
composed of a suite of different technologies that include Go-
Quorum5. This software is a fork of the Ethereum node im-
plementation written in the Go programming language [44],
with some enhancements in terms of (i) privacy, i.e., private
transactions and private contracts; (ii) consensus mecha-
nisms, i.e., QBFT, Raft, and others; (iii) peer authorization,
i.e., access to the network; (iv) account management; and
(v) performance. As far as consensus mechanisms are con-
cerned, we tested the following:

• Istanbul BFT (IBFT) [45], a Byzantine Fault-Tolerant
(BFT) consensus algorithm in which each block re-
quires multiple rounds of voting by a set of validators
(> 66%), recorded as a collection of signatures on the
block;

• QBFT [46], a BFT consensus algorithm similar to IBFT.
The key difference between QBFT and IBFT is that the
validators take turns creating the next block within a
non-randomized dynamic validator set. This is consid-
ered an improvement on IBFT’s security properties;

• Raft [47], a Crash Fault Tolerant (CFT) consensus
mechanism in which the leader is always assumed to act
correctly (honestly) and, whenever the leader crashes,
the rest of the network automatically elects a new one.

2) Hyperledger Besu
Hyperledger Besu6 is an open-source Ethereum client written
in Java. It is included in the suite of technologies of Quorum
for building permissioned networks; however, it can be run
on the Ethereum public blockchain too. Besu includes several
consensus algorithms and has comprehensive authorization
schemes designed for enterprise environments. As far as
consensus mechanisms are concerned, these are the ones
tested:

• IBFT, described above;
• QBFT, described above;

4https://consensys.net/quorum/, accessed 2022-10-04
5https://github.com/ConsenSys/quorum, accessed 2022-10-04
6https://besu.hyperledger.org/en/stable/, accessed 2022-10-04

• Clique [48] a consensus algorithm that, similarly to
IBFT, uses digital signatures to seal the blocks but
sacrifices consistency (a fork can happen) for better
availability and faster block generation.

3) Polygon
Polygon7 is a protocol and a framework for building second-
layer solutions on top of the Ethereum blockchain. Polygon is
used to bootstrap new blockchains while providing full com-
patibility with Ethereum smart contracts and transactions.
The difference with the previous two Quorum solutions is
that Polygon blockchains also support communication with
multiple blockchain networks, enabling the transfer of ERC-
20 and ERC-721 tokens through a bridge. As far as consensus
mechanisms are concerned, these are the ones tested:

• IBFT, described above;
• Proof of Stake (PoS) [49], a consensus algorithm in

which each block validator is required to prove posses-
sion of a certain amount of cryptocurrency.

B. EXPERIMENTATION PROCEDURE
The experimentation procedure consists of the repeated ex-
ecution of each smart contract operation described in Sec-
tion IV-A, so that average performance measures can be
computed. For the Read operation, we considered both the
case where the requested file is found and the case in which
the file is not found.

Specifically, we considered the following interactions:
• Read_found: a Read operation that successfully finds

the file invokes the ReadRequest() and Read-
RequestAck() methods, in that order.

• Read_not_found: a Read operation that does not find the
file invokes the ReadRequest() and ReadRequest-
Deny() methods.

• Upload: the Upload operation invokes the Upload-
Request(), UploadRequestAck() and UploadTrans-
ferAck() in order.

• Delete: the Delete operation invokes the DeleteRequest()
and Delete() methods.

• Monitor_check: the Monitor’s operation for checking a
corrupted file invokes the FileHashRequest(), (Oracle
smart contract) DigestStore() and FileCheck() meth-
ods.

A steady-state simulation consisting of two phases
was performed for each consensus mechanism of each
blockchain, during testing:

• Transient phase: To compute the distribution mean, we
conducted tests on the Upload operation. We measured
the mean response time of each Upload request, which
includes all the interactions with the blockchain, as
described in Section VI-B. We generated a stream of
Upload requests with an exponentially distributed inter-
request time with a rate of λ ∈ 0.5, 1, 2 req/s. The

7https://polygon.technology/, accessed 2022-10-04

VOLUME 4, 2016 11

Zichichi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

response time of the n-th operation is shown in Figure 7,
where each data point is the average of 5 independent
executions of the entire sequence, which lasted for 200s.

• Steady-state phase: The steady-state phase involved
testing all operations for the computation of metrics
over subsequent runs. Each operation was considered
in isolation over a period of 600s with a request rate
of λ ∈ 0.5, 1, 2 req/s. Each test was repeated 5 times
for each parameter combination, and each data point
represents the average response time of all executions.
The metrics of interest included (i) response time, (ii)
throughput, and (iii) error rate, which is the fraction
(percentage) of operations that could not be completed
successfully. The most common causes of errors were
(HTTP) 503 Service Unavailable errors, indicating that
some services were overloaded.

To evaluate the performance of different blockchain/consensus
combinations, we generate a stream of requests with ex-
ponentially distributed inter-request time, that is, the time
between successive requests has probability density function
fλ(x) = λe−λx. The average time between successive
requests is 1/λ; we select λ ∈ {0.5, 1, 2}, where λ = 2
req/s is near the maximum load that our testbed can sustain
(see below).

C. RESULTS
1) Transient analysis.
We start by analyzing the transient phase, i.e., the warm-up
period where a stream of Upload operations is injected into
an initially idle system. The upload operation was chosen
because it involves several interactions and is more likely to
stress the system. All blockchain/consensus and arrival rate
combinations reach a steady-state behavior after about 30
operations. Polygon shows a lower response time (2.2s) than
both Besu (12s) and GoQuorum (13s). We also observe
that the response time is not significantly influenced by the
request rate λ.

2) Steady-state analysis.
We now analyze the steady-state performance mea-
sures for each operation listed in Section VI-B and
blockchain/consensus combination. Figures 8, 9, 10, 11, and
12 show the results for each operation. We use the “box and
whisker” plot to report the minimum and maximum values
(lower and upper whisker), the lower and upper quartile
(box), and the average over 5 runs (orange line) for the
metric taken into consideration. Each column of histograms
plots the results for the increasing values of the request
rate λ ∈ {0.5, 1, 2}.
Discussion. We observe that the response time is more or less
independent from the arrival rate λ of requests; interestingly,
the response time is also more or less the same for all types
of requests once the blockchain/consensus combination has
been chosen. The latter is somewhat surprising since we
know from Section V that different types of operation trigger
different interactions among the involved entities.

TABLE 1. Gas usage for different operations/Smart Contract combinations.

Smart Contract Operation Gas Usage

Factory deploy() 4 051 597
createChild() 3 403 924

CloudSLA

UploadRequest() 114 379
UploadRequestAck() 45 152
UploadTransferAck() 115 319
ReadRequest() 47 148
ReadRequestAck() 68 442
ReadRequestDeny() 75 996
DeleteRequest() 47 237
Delete() 36 174
FileHashRequest() 73 143
FileCheck() 88 861
FileCheck() (corrupted) 74 484

FileDigestOracle deploy() 617 595
DigestStore() 52 195

On the other hand, the error rate is greatly influenced by λ.
In particular, few errors are reported when λ = 0.5, while
with λ = 2, many blockchain/consensus combinations result
in 2% and 8% operations failing. This is why we have chosen
λ = 2 req/s as the maximum request rate our testbed can
sustain. Again, the error rate is more or less independent of
the operation.

As the middle row shows, although the throughput is
the same, response times vary greatly depending on the
blockchain used. Polygon IBFT, Polygon PoS, and GoQuo-
rum Raft have a lower response time. Polygon’s configura-
tions have a latency between 1.7 and 2.8 for all operations,
while GoQuorum’s configuration always responds with an
average latency of about 0.6s. The three Besu configura-
tions have a fluctuating behavior, with latencies between 7.7
and 13 seconds, while GoQuorum’s IBFT and QBFT have
the worst performances with a maximum latency of 16.2
seconds.

As expected, the two operations that need more time to
be completed are the Upload and Monitor_check since these
involve three smart contract methods instead of only two, as
the other operations do.

3) Gas usage.
Table 1 shows the gas usage of our implementation. The
Factory contract has the methods with the highest gas usage;
however, these methods are invoked rarely. The deploy()
factory method is called only once with a gas usage of 4000k,
while createChild() is invoked for each instance of a new
CloudSLA contract with a gas usage of 3400k. The Cloud-
SLA contract includes most of the methods invoked more
frequently, with gas usage ranging from 36k to 115k. These
methods have a more reasonable gas usage and favor a
feasible usage by the User. The ReadRequest() method is
likely to be the most frequently used in practice and has
the lowest gas usage, which is desirable indeed. Finally, the
deploy() method of FileDigestOracle is invoked only once
per Oracle with 600k gas units, while DigestStore() gas

12 VOLUME 4, 2016

Zichichi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 7. Performance of the transient phase; a stream of requests is injected into an initially idle system and the average latency of the i-th request is plotted. All
combinations of blockchain/consensus and inter-arrival rate λ are considered. For λ = 0.5 curves are plot together with bands that indicate the confidence interval
at 95%

FIGURE 8. Steady-state performance measures for the Read_found operation.

usage is in the same order as gas usage of the CloudSLA
contract methods.

VII. DISCUSSION
In this section we discuss two issues that are central
to our proposal: (i) the issue of efficiency in a mixed
cloud/blockchain environment; (ii) the issue of Monitor cen-
tralization (i.e., centralized vs. decentralized oracle).

Overall, the results discussed in Section VI show that
Polygon and GoQuorum Raft perform better. Indeed, they
achieve zero error rate and a reasonable latency, that seems
not to be influenced by the inter-arrival rate λ, i.e., they
are more scalable. However, evidence shows that current
incarnations of blockchain technologies might not provide
response times low enough to support a large number of
concurrent customers. Additionally, transaction fees might

VOLUME 4, 2016 13

Zichichi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 9. Steady-state performance measures for the Read_not_found operation.

FIGURE 10. Steady-state performance measures for the Upload operation.

represent an economic disincentive to the above-mentioned
approach, even if gas usage is low for frequent operations
(see Section VI-C3). Thus, the choice of which blockchain
technology to use remains a significant problem that needs
to be addressed in future research. Indeed, it is possible that
traditional Ethereum-like blockchain solutions are not the
most appropriate in this context. Other approaches are based
on a different, more scalable structure for representing the

distributed ledger and removing fees, such as IOTA [32].
Indeed, a permissioned blockchain would have the advantage
of being more efficient, scalable, and only accessible by a
dedicated group of entities who have the eligibility to join it.

The second issue concerns the centralization of the Mon-
itor. The oracle component that implements the Monitor is
a standalone module that can be de-centralized. A decen-
tralized oracle allows both the User and the Cloud to put

14 VOLUME 4, 2016

Zichichi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 11. Steady-state performance measures for the Delete operation.

FIGURE 12. Steady-state performance measures for the Monitor_check operation.

their trust in a group of coordinated oracles instead of a
single Monitor entity. In practice, a pool of monitors reduces
the likelihood of incurring in a malicious third-party oracle
while, at the same, making it harder for an attacker to
compromise a (possibly large) set of servers [50]. In what
follows, we describe a preliminary implementation of such a
decentralized version of the Monitor based on Chainlink [51].

Chainlink is a general-purpose framework and infras-

tructure for providing computational resources to smart
contracts. It can transfer tamper-proof data from off-chain
sources to on-chain smart contracts. Our preliminary im-
plementation uses the Chainlink decentralized network of
oracles to check file hashes to ensure their integrity. This
allows the implementation of a Monitor as an unbiased,
decentralized entity. The Monitor implementation is an ex-
tension of a base Chainlink node. This extension adds the

VOLUME 4, 2016 15

Zichichi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 13. UML sequence diagram for the interactions involved with a
decentralized monitor.

Monitor operations described above to a Chainlink node
software. The prototype CloudSLA smart contract then “in-
vokes” the decentralized oracle network and receives a reply
from Chainlink nodes that implemented the extension.

In order to describe how the procedure works, we use
a modified version of Figure 5. In Figure 13 we can see
how the Monitor has been split into two entities, one on-
chain, i.e., the Chainlink smart contract, and one off-chain,
i.e., the Chainlink monitor node. Once the User invokes the
Digest request operation (a), the CloudSLA smart contract
invokes the Chainlink smart contract with a new Chainlink
request (x). Upon execution of this function, the Chainlink
smart contract emits a Read request event (y1) containing
information about the request. This event is crucial, as several
off-chain Chainlink Monitor nodes monitor it. This Chainlink
smart contract, indeed, mainly provides an on-chain inter-
face to the Chainlink decentralized infrastructure. The off-
chain Chainlink monitor node is responsible for listening for
events emitted, and once it detects a request, it uses the data
emitted to perform a “job”. This requested job is the same
as before, i.e., the Read operation (b), but now executed
in a decentralized way as many nodes can reply and get
an automatic reward (through the Chainlink smart contract).
Moreover, the Chainlink decentralized infrastructure verifies
the process because all the procedure’s metadata passes
through its network. Finally, a Chainlink monitor node can
Fulfill a request (y2) once the job results. The original request
contained a callback to be executed upon completion of the
job that, in our case, consists of the Digest store operation (c).
The monitoring process then terminates, as in the centralized
case, with an on-chain File-check (d) and result processing
(e). The implementation of our prototype can be found on
GitHub [52].

VIII. CONCLUSIONS
In this paper, we explored the use of blockchain technologies
to build an unforgeable log for Cloud accountability. The
blockchain allows tamper-proof logging of events into a
distributed ledger that can then be used to verify if SLAs are
violated. We have shown that smart contracts allow automatic
identification of responsibilities if SLA violations occur,

therefore simplifying the process of settling disputes. As a
practical case study, we considered a standard cloud storage
service, and, for each possible operation, we described an
interaction protocol that logs all relevant events using a smart
contract. We developed our smart contract in the Solidity
language to allow interoperability since this language is
supported by the Ethereum Virtual Machine on which several
blockchain platforms are based.

Our implementation was deployed and tested over dif-
ferent blockchain platforms, i.e., GoQuorum, Hyperledger
Besu, and Polygon, with different consensus protocols to
study response times, error rates, and gas usage. Performance
results show that in the configurations we have tested, Poly-
gon and GoQuorum Raft can provide significantly lower re-
sponse times and negligible (if not null) error rates. The high
gas usage for some operations suggests that a permissioned
blockchain should be preferred to avoid high fees and offer
better scalability.

Along the lines of this work, our future research will
be devoted to evaluate the performance of our prototype
decentralized oracle and enhance it.

ACKNOWLEDGMENTS
This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie International Training Network
European Joint Doctorate grant agreement No 814177 Law,
Science and Technology Joint Doctorate - Rights of Internet
of Everything, and from the University of Urbino through
the “Bit4Food” research project. We are indebted to Paola
Persico, Giosuè Cotugno, Davide Pruscini, Emanuele Sina-
gra and Valerio Tonelli for their contribution on a preliminary
implementation of the system.

REFERENCES
[1] G. D’Angelo, S. Ferretti, and M. Marzolla, “A blockchain-based flight

data recorder for cloud accountability,” in Proceedings of the 1st
Workshop on Cryptocurrencies and Blockchains for Distributed Systems,
ser. CryBlock’18. New York, NY, USA: ACM, 2018, pp. 93–98.
[Online]. Available: http://doi.acm.org/10.1145/3211933.3211950

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, pp. 50–58, April 2010.

[3] C. Esposito, A. De Santis, G. Tortora, H. Chang, and K.-K. R. Choo,
“Blockchain: A panacea for healthcare cloud-based data security and
privacy?” IEEE Cloud Computing, vol. 5, no. 1, pp. 31–37, 2018.

[4] G. Ateniese, M. T. Goodrich, V. Lekakis, C. Papamanthou, E. Paraskevas,
and R. Tamassia, “Accountable storage,” in Applied Cryptography and
Network Security, D. Gollmann, A. Miyaji, and H. Kikuchi, Eds. Cham:
Springer International Publishing, 2017, pp. 623–644.

[5] A. Haeberlen, “A case for the accountable cloud,” SIGOPS Oper.
Syst. Rev., vol. 44, no. 2, pp. 52–57, Apr. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1773912.1773926

[6] R. Neisse, G. Steri, and I. Nai-Fovino, “A blockchain-based approach
for data accountability and provenance tracking,” in Proc. 12th Int. Conf.
on Availability, Reliability and Security, ser. ARES ’17. ACM, 2017,
pp. 14:1–14:10. [Online]. Available: http://doi.acm.org/10.1145/3098954.
3098958

[7] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy, “Towards
blockchain-based auditable storage and sharing of iot data,” in Proc. 2017
Cloud Computing Security Workshop, ser. CCSW ’17. ACM, 2017, pp.
45–50. [Online]. Available: http://doi.acm.org/10.1145/3140649.3140656

16 VOLUME 4, 2016

Zichichi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[8] D. E. Adjepon-Yamoah, “Cloud accountability method: Towards account-
able cloud service-level agreements,” in Proceedings of Sixth International
Congress on Information and Communication Technology, X.-S. Yang,
S. Sherratt, N. Dey, and A. Joshi, Eds. Singapore: Springer Singapore,
2022, pp. 439–458.

[9] Y. S. Tan, R. K. Ko, and G. Holmes, “Security and data accountability in
distributed systems: A provenance survey,” in 2013 IEEE 10th Interna-
tional Conference on High Performance Computing and Communications
& 2013 IEEE International Conference on Embedded and Ubiquitous
Computing. IEEE, 2013, pp. 1571–1578.

[10] J. Becker and E. Bailey, “A comparison of it governance & control
frameworks in cloud computing,” in Twentieth Americas Conference on
Information Systems, 2014.

[11] P. M. Mell and T. Grance, “The NIST definition of Cloud Computing,”
National Institute of Standards & Technology, Gaithersburg, MD, United
States, Tech. Rep. SP 800-145, 2011.

[12] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010.
[Online]. Available: http://doi.acm.org/10.1145/1721654.1721672

[13] M. Marzolla, S. Ferretti, and G. D’Angelo, “Dynamic resource
provisioning for cloud-based gaming infrastructures,” Comput. Entertain.,
vol. 10, no. 1, pp. 4:1–4:20, Dec. 2012. [Online]. Available: http:
//doi.acm.org/10.1145/2381876.2381880

[14] S. Ferretti, V. Ghini, F. Panzieri, M. Pellegrini, and E. Turrini, “Qos-aware
clouds,” in Proc. 2010 IEEE 3rd Int. Conf. on Cloud Computing, ser.
CLOUD ’10. IEEE Computer Society, 2010, pp. 321–328. [Online].
Available: http://dx.doi.org/10.1109/CLOUD.2010.17

[15] A. Haeberlen, P. Kouznetsov, and P. Druschel, “Peerreview: Practical
accountability for distributed systems,” SIGOPS Oper. Syst. Rev.,
vol. 41, no. 6, pp. 175–188, Oct. 2007. [Online]. Available: http:
//doi.acm.org/10.1145/1323293.1294279

[16] A. R. Yumerefendi and J. S. Chase, “Trust but verify: Accountability for
network services,” in Proceedings of the 11th Workshop on ACM SIGOPS
European Workshop, ser. EW 11. ACM, 2004, pp. 175–188. [Online].
Available: http://doi.acm.org/10.1145/1133572.1133585

[17] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards trusted
cloud computing,” in Proceedings of the 2009 Conference on Hot
Topics in Cloud Computing, ser. HotCloud’09. Berkeley, CA, USA:
USENIX Association, 2009, pp. 175–188. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1855533.1855536

[18] J. Yao, S. Chen, C. Wang, D. Levy, and J. Zic, “Accountability as a
service for the cloud,” in 2010 IEEE International Conference on Services
Computing, 2010, pp. 81–88.

[19] R. K. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg,
Q. Liang, and B. S. Lee, “Trustcloud: A framework for accountability
and trust in cloud computing,” in 2011 IEEE World Congress on Services,
2011, pp. 584–588.

[20] S. Pearson, “Toward accountability in the cloud,” IEEE Internet Comput-
ing, vol. 15, no. 4, pp. 64–69, 2011.

[21] V. C. Emeakaroha, T. C. Ferreto, M. A. S. Netto, I. Brandic, and C. A. F.
De Rose, “Casvid: Application level monitoring for sla violation detection
in clouds,” in IEEE 36th Annual Computer Software and Applications
Conference, 2012, pp. 499–508.

[22] Q. Li, Z. Yang, X. Qin, D. Tao, H. Pan, and Y. Huang, “Cbff: A
cloud–blockchain fusion framework ensuring data accountability for
multi-cloud environments,” Journal of Systems Architecture, vol. 124, p.
102436, 2022.

[23] M. R. Dorsala, V. Sastry, and S. Chapram, “Blockchain-based solutions for
cloud computing: A survey,” Journal of Network and Computer Applica-
tions, vol. 196, p. 103246, 2021.

[24] S. Xie, Z. Zheng, W. Chen, J. Wu, H.-N. Dai, and M. Imran,
“Blockchain for cloud exchange: A survey,” Computers and Electrical
Engineering, vol. 81, p. 106526, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0045790618332750

[25] M. Xie, Y. Yu, R. Chen, H. Li, J. Wei, and Q. Sun, “Accountable out-
sourcing data storage atop blockchain,” Computer Standards & Interfaces,
vol. 82, p. 103628, 2022.

[26] Q. Li, Z. Yang, X. Qin, D. Tao, H. Pan, and Y. Huang, “Cbff: A
cloud–blockchain fusion framework ensuring data accountability for
multi-cloud environments,” Journal of Systems Architecture, vol. 124,
p. 102436, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1383762122000339

[27] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla,
“Provchain: A blockchain-based data provenance architecture in cloud
environment with enhanced privacy and availability,” in 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID), 2017, pp. 468–477.

[28] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentral-
ized Business Review, p. 21260, 2008.

[29] M. Becker and B. Bodó, “Trust in blockchain-based systems,” Internet
Policy Review, vol. 10, no. 2, 2021.

[30] Y. Kurt Peker, X. Rodriguez, J. Ericsson, S. J. Lee, and A. J. Perez, “A cost
analysis of internet of things sensor data storage on blockchain via smart
contracts,” Electronics, vol. 9, no. 2, p. 244, 2020.

[31] Z. Zheng, S. Xie, H.-N. Dai, W. Chen, X. Chen, J. Weng, and M. Imran,
“An overview on smart contracts: Challenges, advances and platforms,”
Future Generation Computer Systems, vol. 105, pp. 475–491, 2020.

[32] M. Zichichi, S. Ferretti, and G. D’Angelo, “A framework based on dis-
tributed ledger technologies for data management and services in intelli-
gent transportation systems,” IEEE Access, vol. 8, pp. 100 384–100 402,
2020.

[33] S. Popov, “The tangle,” White paper, vol. 1, no. 3, 2018.
[34] P. De Filippi, C. Wray, and G. Sileno, “Smart contracts,” Internet Policy

Review, vol. 10, no. 2, 2021.
[35] B. Liu, P. Szalachowski, and J. Zhou, “A first look into defi oracles,” in

2021 IEEE International Conference on Decentralized Applications and
Infrastructures (DAPPS). IEEE, 2021, pp. 39–48.

[36] H. Jayathilaka, C. Krintz, and R. Wolski, “Performance monitoring and
root cause analysis for cloud-hosted web applications,” in Proc. of the 26th
International Conference on World Wide Web, ser. WWW ’17, 2017, pp.
469–478. [Online]. Available: https://doi.org/10.1145/3038912.3052649

[37] G. Kesidis, B. Urgaonkar, N. Nasiriani, and C. Wang, “Neutrality in
future public clouds: Implications and challenges,” in Proceedings of
the 8th USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’16. Berkeley, CA, USA: USENIX Association, 2016, pp.
90–95. [Online]. Available: http://dl.acm.org/citation.cfm?id=3027041.
3027056

[38] R. Merkle and M. Hellman, “Hiding information and signatures in trap-
door knapsacks,” IEEE Transactions on Information Theory, vol. 24, no. 5,
pp. 525–530, 1978.

[39] P. Sun, “Security and privacy protection in cloud computing: Discussions
and challenges,” Journal of Network and Computer Applications, vol. 160,
p. 102642, 2020.

[40] P. Persico, D. Pruscini, G. Cotugno, and M. Zichichi, “cloud-chain,” 2022.
[Online]. Available: https://github.com/miker83z/cloud-chain

[41] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[42] L. Zhang, B. Lee, Y. Ye, and Y. Qiao, “Evaluation of ethereum end-to-end
transaction latency,” in 2021 11th IFIP International Conference on New
Technologies, Mobility and Security (NTMS). IEEE, 2021, pp. 1–6.

[43] M. Mazzoni, A. Corradi, and V. Di Nicola, “Performance evaluation
of permissioned blockchains for financial applications: The consensys
quorum case study,” Blockchain: Research and applications, vol. 3, no. 1,
p. 100026, 2022.

[44] A. Donovan and B. Kernighan, The Go Programming Language.
Addison-Wesley, 2015.

[45] H. Moniz, “The istanbul bft consensus algorithm,” 2020. [Online].
Available: https://arxiv.org/abs/2002.03613

[46] R. Saltini, “QBFT blockchain consensus protocol specification v1,”
EEA Editor’s Draft, 2022, (Accessed 2022-06-29). [Online]. Available:
https://entethalliance.github.io/client-spec/qbft_spec.html

[47] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference, ser. USENIX ATC’14. USA: USENIX
Association, 2014, p. 305–320.

[48] P. Szilágyi, “Eip-225: Clique proof-of-authority consensus protocol,”
Ethereum Improvement Proposals, no. 225, Mar. 2017, (Accessed on
2022-06-29). [Online]. Available: https://eips.ethereum.org/EIPS/eip-225

[49] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake,” self-published paper, August, vol. 19, no. 1, 2012.

[50] L. Ma, K. Kaneko, S. Sharma, and K. Sakurai, “Reliable decentralized
oracle with mechanisms for verification and disputation,” in 2019 Sev-
enth International Symposium on Computing and Networking Workshops
(CANDARW). IEEE, 2019, pp. 346–352.

[51] L. Breidenbach, C. Cachin, B. Chan, A. Coventry, S. Ellis, A. Juels,
F. Koushanfar, A. Miller, B. Magauran, D. Moroz et al., “Chainlink 2.0:

VOLUME 4, 2016 17

Zichichi et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Next steps in the evolution of decentralized oracle networks,” Chainlink
Labs, vol. 1, 2021.

[52] E. Sinagra, V. Tonelli, P. Persico, D. Pruscini, G. Cotugno,
and M. Zichichi, “cloud-chain decentralized oracle proto-
type,” 2023. [Online]. Available: https://github.com/AnaNSi-research/
cloud-chain-decentralized-oracle

MIRKO ZICHICHI is a doctoral researcher in
the Law, Science and Technology Joint Doctor-
ate - Rights of Internet of Everything, funded by
Marie Skłodowska-Curie Actions. He received a
Bachelor degree in Computer Science from the
University of Palermo in 2017 and a Master degree
in Information Science for Management from the
University of Bologna in 2019 (both summa cum
laude). He joined the Ontology Engineering Group
(OEG) of the Universidad Politécnica de Madrid

later in 2019. His doctoral research focuses on the location privacy and
inference in online social networks and on the use of Distributed Ledger
Technologies and Smart Contracts for the protection and distribution of
individuals’ personal data.

STEFANO FERRETTI is an Associate Professor
at the Department of Pure and Applied Sciences,
University of Urbino Carlo Bo, since 2020. Ear-
lier, he was Associate Professor at the Department
of Computer Science and Engineering of the Uni-
versity of Bologna. He received the Laurea degree
(summa cum laude) and the Ph.D. in Computer
Science from the University of Bologna in 2001
and in 2005, respectively. His current research
interests include distributed systems, complex net-

works, data science, fintech and blockchain technologies, multimedia com-
munications, hybrid and distributed simulation. He is in the editorial board of
the Simulation Modelling Practice and Theory (SIMPAT) journal, Elsevier,
and of the Encyclopedia of Computer Graphics and Games, published by
Springer. He is in the technical committee of Computer Communications,
Elsevier, as well as Online Social Networks and Media, Elsevier. He acted
as editor of special issues on other international journals (i.e., Wiley CPE,
Elsevier ComCom). He acted as chairs for several conferences and work-
shops within flagship conferences, e.g., ACM Mobisys, IEEE InfoCom.

GABRIELE D’ANGELO received the Laurea de-
gree (summa cum laude) in Computer Science in
2001, and a Ph.D. in Computer Science in 2005,
both from the University of Bologna, Italy. He
is an Assistant Professor at the Department of
Computer Science and Engineering, University of
Bologna. His research interests include parallel
and distributed simulation, distributed systems,
online gaming and computer security. Since 2011
he is in the editorial board of the Simulation Mod-

elling Practice and Theory (SIMPAT) journal published by Elsevier and he
is a Technical Program Committee member of INFOCOM since 2019.

MORENO MARZOLLA is Associate Professor
of computer science at the University of Bologna.
He got a Ph.D. in Computer Science from the
Università “Ca’ Foscari” di Venezia (Italy) in
2004. From 2004 to 2005 he was a post-doc
researcher at the Università “Ca’ Foscari”, and
from 2005 to 2009 he was a research engineer at
the Italian National Institute for Nuclear Physics
(INFN) supported by several EU-funded projects
in the area of Grid and Cloud computing; he also

served as co-chair the Production Grids Infrastructure (PGI) Working Group
at the Open Grid Forum. In 2009 he joined the department of Computer
Science and Engineering of the University of Bologna. His research interests
include distributed systems, performance modeling and analysis, and parallel
algorithms.

18 VOLUME 4, 2016

