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ABSTRACT
We investigate the use of deep learning to classify smart contract
code vulnerabilities. We use different variants of Convolutional
Neural Networks (CNNs) and a Long Short-Term Memory (LSTM)
neural network. Five classes of vulnerabilities were employed. Our
results suggest that the CNNs are able to provide a good level of
accuracy, thus showing the viability of the proposed approach.
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1 INTRODUCTION
Smart contracts have gained momentum in recent years thanks to
their unique immutability and automatic enforceability features.
They are used in various applications, ranging from decentralized
finance up to traceability, service monitoring, decentralized social
applications, and personal data distribution management [2, 10–
12]. The most popular blockchain platform able to support smart
contracts is Ethereum. Ethereum’s smart contracts are written in
Solidity, a Turing complete programming language. It is a powerful
language, but, at the same time, it paves the way for bugs and code
vulnerabilities.

This paper explores deep learning techniques for detecting and
classifying vulnerabilities in smart contracts deployed on the Ethe-
reum main net. Our study compares four different types of neu-
ral networks, i.e., a baseline Long Short-Term Memory (LSTM), a
ResNet 1D Convolutional Neural Network (CNN), a 2D ResNet-18
CNN, and a 2D Inception v3 CNN.

Results show the viability of the proposal. Indeed, the ResNet
1D CNN, working directly on the smart contract byte code, seems
to offer the best results in terms of classification capabilities.
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2 METHODOLOGY
We employed two available datasets of labeled smart contracts,
i.e. SmartBugs [3] and ScrawlID [9]. Moreover, a list of verified
smart contracts was retrieved from Smart Contract Sanctuary [7].
The final dataset comprises more than 100k smart contracts labeled
using the Slither static analyzer.

This tool passes the code through several rule-based detectors
and returns a JSON file containing details about where those de-
tectors found a vulnerability. The 38 detectors that found a match
in our dataset were then mapped to the following five classes: i)
Access-control, i.e. if the visibility of some fields/functions is not
correctly set to private, malicious users could have access to them;
ii)Arithmetic, i.e. related to integer underflow and overflow errors;
iii) Reentrancy, i.e. when a call to an external contract is allowed
to make new calls to the calling contract before the initial execution
is complete; iv) Unchecked-calls i.e. Solidity offers some low-level
functions, which do not propagate errors and return false without
ending the execution; v) Others i.e. a class that groups all other
detectors. The dataset was separated into 79.6k, 10.8k, and 15.9k
for training, validation, and test sets, respectively. It is important to
note that a single contract may have more than one vulnerability.
Table 1 shows the number of contracts our training set has per
vulnerability class and the percentage of the contracts in that class
that also have one or more other vulnerabilities. It is possible to
notice how the classes are strongly unbalanced.

Table 1: Number of smart contracts per class (training set),
along with the percentage of contracts of that class that have
other vulnerabilities

Vulnerability Contracts Multi-label Contracts (%)

unchecked-calls 36353 72.32 %
safe 27036 00.00 %
reentrancy 24161 91.51 %
other 20993 84.17 %
arithmetic 13530 77.05 %
access-control 11704 87.27 %

Given the dataset, the smart contract bytecodes were trans-
formed into RGB images following the procedure proposed in [5].

Then, smart contracts were classified using four deep neural
networks architectures: two traditional 2D Convolutional Neural
Networks (CNNs), namely ResNet-18 [4] and Inception v3 [8], both
working on built RGB images; a 1D CNN applied directly to the
contract bytecode, which was treated as a signal and normalized
to be between -1 and 1 [6]; a baseline Long Short-Term Memory
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(LSTM) model was again trained only on the sequences of opcodes
in the contract bytecode.

3 RESULTS
We tried different training configurations for every model type.
The ResNet-inspired 1D convolutional neural network achieved the
best performances. The model was trained using the SGD optimizer
with a learning rate set to 0.001, and an L2 penalty of 0.0001 applied
only on convolutional and dense layer weights [1]. Finally, the
optimized loss for this model was binary-cross-entropy, and in our
case, we found the performance to be better without them.

Table 2 reports the best results we achieved on the validation set
for every architecture. In this context, where every element can be in
more than one class, and the class labels are not balanced, accuracy
is not an ideal metric. Indeed, we also consider a micro-averaged
version of the F1 score, which aggregates the contributions of all
classes to compute the average metric and thus treats the examples
of each class with equal weight.

Table 2: Models’ results on the validation set

Model name Accuracy Micro F1

ResNet1D 0.7353 0.8381
ResNet 0.6841 0.7928
Inception 0.6988 0.8015
LSTM Baseline 0.6934 0.7953

We can immediately see that the LSTM baseline obtains poor
results; this is probably because we cut the bytecode to just 512
opcodes due to the limited memory and computational resources.
However, our data analysis shows that most bytecodes have a length
of about 5000 opcodes. The portion we use probably corresponds
to only a tiny first portion of the contract code.

2D CNNs (ResNet, Inception) do not require the input to be trun-
cated in any way: we first create the images using all the bytecode
and then resize them as needed. However, results suggest they do
not represent an ideal choice in this application. Indeed, patterns
for code vulnerability detection in Solidity may only be at the level
of a small sequence of opcodes and thus may be missed when using
stridden convolutions. Indeed, literature in malware classification
shows that malicious code patterns in that domain are usually much
more significant and easier to detect, even to the human eye [6].

Note that the ResNet 1D convolutional network again requires
the input to be cut off. However, the nature of the network lets us
use a larger maximum length of 16384 (corresponding to a flattened
128x128 image). As shown in the table above, this architecture is
the one that achieves the best results.

We show in Table 3 the confusion matrices relative to the per-
formance of our best model (i.e., ResNet1D) on the test set. They
show that the class unchecked-calls have very few mis-classified
examples, while the percentage of errors significantly increases
when considering the other classes. This was predictable because
unchecked-calls is a vulnerability in more than 35000 of the origi-
nal train contracts, thus making it the majority class. Among the
other classes, we notice that the two with fewer training examples
(access-control and arithmetic) are where our classifier makes the

Table 3: Per-class confusion matrices obtained by ResNet1D
on the test set

Predicted Class

Access Control Arithmetic Reentrancy Unchecked-calls Other

Yes No Yes No Yes No Yes No Yes No

Ac
tu
al
Cl
as
s

Yes 0.71 0.29 0.72 0.28 0.81 0.19 0.90 0.10 0.77 0.23
No 0.02 0.98 0.04 0.96 0.04 0.96 0.05 0.95 0.07 0.93

most errors. Finally, classes others and reentrancy have more or less
the same number of samples in the training set. However, the first
one is mis-classified a lot more: this is probably due to the inherent
nature of this class, which groups all the interesting vulnerabilities
that are not part of the other four classes. This variety may indeed
generate some confusion for the detector.

4 CONCLUSIONS
This paper showed that deep learning techniques could be a viable
tool for identifying and classifying smart contract code vulnerabili-
ties. Based on the dataset we built, we have trained and tested four
different neural network architectures. Using the aforementioned
dataset, we thus approach the problem of vulnerability classification
as a multi-label classification problem. Results show that, according
to our configuration based on the available computational capabili-
ties, the 1D ResNet CNN working on the smart contract bytecodes
can provide the best results in terms of accuracy and Micro F1.
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