
This is the final peer-reviewed accepted manuscript of:

Simulation of the Internet Computer Protocol: the Next Generation Multi-
Blockchain Architecture

Conference Proceedings: 2022 IEEE/ACM 26th International Symposium
on Distributed Simulation and Real Time Applications (DS-RT 2022), IEEE.
26-28 September 2022, Alès, France

Author: Luca Serena; AoXuan Li; Mirko Zichichi; Gabriele D'Angelo;
Stefano Ferretti; Su-Kit Tang

Publisher: IEEE

The final published version is available online at:
https://dx.doi.org/10.1109/DS-RT55542.2022.9932122

Rights / License:

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. The terms and conditions
for the reuse of this version of the manuscript are specified in the publishing policy.
For all terms of use and more information see the publisher's website:

https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/
author_version_faq.pdf

This item was downloaded from the author personal website (https://mirkozichichi.me)

When citing, please refer to the published version.

https://dx.doi.org/10.1109/DS-RT55542.2022.9932122
https://mirkozichichi.me/
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/author_version_faq.pdf
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/author_version_faq.pdf

Simulation of the Internet Computer Protocol: the
Next Generation Multi-Blockchain Architecture

Luca Serena†, AoXuan Li∗, Mirko Zichichi‡†, Gabriele D’Angelo†, Stefano Ferretti§, Su-Kit Tang∗
∗Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, China
†Department of Computer Science and Engineering, University of Bologna, Italy

‡Ontology Engineering Group, Universidad Politécnica de Madrid, Spain
§Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, Italy

{luca.serena2,gabriele.dangelo}@unibo.it, {aoxuan.li,sktang}@mpu.edu.mo
mirko.zichichi@upm.es, stefano.ferretti@uniurb.it

Abstract—The Internet Computer Protocol is a new generation
blockchain that aims to provide better security and scalability
than the traditional blockchain solutions. In this paper, this inno-
vative distributed computing architecture is introduced, modeled
and then simulated by means of an agent-based simulation. The
result is a digital twin of the current Internet Computer, to
be exploited to drive future design and development optimiza-
tions, investigate its performance, and evaluate the resilience of
this distributed system to some security attacks. Preliminary
performance measurements on the digital twin and simulation
scalability results are collected and discussed. The study also
confirms that agent-based simulation is a prominent simulation
strategy to develop digital twins of complex distributed systems.

Index Terms—Simulation, Performance Evaluation, Internet
Computer Protocol, Blockchain, Agent-based Simulation.

I. INTRODUCTION

Blockchains and more in general Distributed Ledger tech-
nologies (DLTs) are successful examples of distributed sys-
tems with a relevant impact on both economy and computer
science. As always happens with any technology, DLTs have
some relevant drawbacks but also some interesting advantages
that can be used for building a new generation of distributed
systems. To name a few: decentralization, data immutability,
transparency, no third parties involved in transactions are few
examples of properties that can be useful in the design and
implementation of some specific systems aimed to provide new
services to the final users or to improve the security aspects
of supply-chains (both for physical and virtual goods, such as
the software).

After a first generation of blockchains, corresponding to
the initial success of Bitcoin, many improved blockchain
platforms have been designed both to support new cryptocur-
rencies and for more generic purposes (e.g., Ethereum),
succeeding in significantly improving some known problems.
Limited scalability, the amount of time required to validate
transactions recorded in the blockchain, decentralized man-
agement of blockchain updates and its controlling organization
are all known problems of the first proposed blockchains.

The research on these topics is really active and even
more advanced blockchain solutions are currently investigated,
proposed and partially deployed. For example, the Internet

Computer Protocol (ICP) architecture1 is based on a network
of networks aimed at combining the resources of several
computers and distributing computation. This happens by
means of a protocol that supports the reading, replication,
modification, and procurement of decentralized applications.

One of the goals of the ICP is to coordinate a distributed
system that is composed of many independently-operated
data centers. The obtained system is then able to provide a
general-purpose abstract platform that is largely transparent
for end-users and supports distributed computations. In other
words, the ICP makes it possible to easily build decentralized
applications that run smoothly on this new multi blockchain-
based distributed infrastructure. Multi blockchain means that
the whole IPC network is partitioned in shards and each shard
can be considered as a fully functioning blockchain, processing
disjoint sets of transactions. Under the hood, this abstraction is
made possible thanks to reliable message delivery, transparent
accountability, and resilience that must be provided by the ICP
and its embedded mechanisms.

The employment of new technological features goes along
with the need to test and verify the proposed innovations
before the final deployment. Modeling and simulations are thus
powerful tools for performing tests on security, scalability, and
sustainability of the designed technologies, providing some-
times useful insights about the feasibility of the innovations
and the potential problems of the system. For these reasons,
we aim to provide a digital-twin of the current ICP implemen-
tation that is based on efficient simulation techniques and that
enables the developers to support the design and deployment of
ICP by means of the so-called ”what-if” analysis. In practice,
the digital twin of the ICP is a simulator that is able to mimic
the relevant behaviors of the ICP architecture and that can be
used to investigate some specific problems (e.g., scalability and
resilience to attacks). A preliminary design of the digital twin
of the ICP has been proposed by the authors in [1]. From our
point of view, the ICP is a good example of next-generation
blockchain to be simulated since it embodies the advanced
features that sharded/multi-blockchains promise to deliver [2].

1Authors are not sponsored or affiliated in any way with the DFINITY
Foundation which is the not-for-profit organization that develops the Internet
Computer Protocol.

978-1-6654-3326-6/21/$31.00 © 2021 IEEE

This paper is structured as follows. Section II provides the
necessary background about the technologies that are at the
basis of ICP (e.g., blockchain and the consensus protocols)
and a discussion of the related work. Section III introduces
the ICP distributed architecture; while in Section IV, the
proposed ICP simulator is described both in terms of overall
architecture and implementation. In Section V, the preliminary
performance results about the developed ICP digital twin are
reported and discussed together with a scalability evaluation
of the proposed simulator. Finally, Section VI provides the
concluding remarks.

II. BACKGROUND AND RELATED WORK

In this section, we briefly describe the background technolo-
gies and methodologies that are necessary for understanding
the ICP architecture, and then we discuss the related work.

A. Blockchains

A blockchain is a ledger, distributed among a set of network
nodes, which generally stores information encoded as a set
of ordered transactions. These transactions are grouped into
blocks, then each block is linked to the previous block using its
hash digest value. This chain of blocks composed using hash
links to previous blocks makes tampering with the ledger very
unlikely. The first technology implementing a blockchain was
Bitcoin [3], in which transactions are mostly used to transfer
value from one account to another. Ethereum [4], is considered
as a second generation blockchain because it also supports
smart contracts in its transactions, enabling thus the creation
of decentralized applications.

A blockchain grows by appending new blocks. It is essential
that all network nodes are working on the same blockchain.
The majority of network nodes have to agree on the validation
of transactions that are included inside the new block and
the block itself. Moreover, they may also decide who is
responsible for creating the new block. Therefore, a blockchain
defines a set of protocols called consensus algorithms, which
ensure all (or the majority of) network nodes agree on the
present state of the blockchain and append the same block.

B. Consensus Protocols

A consensus protocol is concerned with the reaching of con-
sensus among the networking peers for system availability and
reliability. To reach consensus, mechanisms for incentivising
the partaking network nodes have shown good enough results
for such systems to remain reliable over time [5]. Namely, the
blockchain network nodes use a protocol to reach a consensus
whether a block is well-formatted and all transactions within
are validated. If more than a single block is proposed to be
appended at the same time, the network nodes have also to
decide which block is appended to the chain. The wildly
adopted protocols are proof-based algorithm and vote-based
algorithm [6]. Under the proof-based algorithm, a network
node may append a block only if it can solve a cryptographic
puzzle and prove it to other nodes, e.g., Proof-of-Work. Under
the vote-based algorithm, a block is appended to the chain only

if a large enough part of the nodes proposes the same block,
e.g., Proof-of-Stake.

C. Related Work

The ICP is a new technology that has been recently
proposed and therefore specific simulators are not already
available. Despite this, some simulators have already been
proposed for the modeling and performance evaluation of
blockchains and distributed ledger technologies. The different
simulators mainly differ in the simulation methodology that is
used and in the level of detail at which the system is modeled.
Both these aspects have a very relevant influence on the
simulation outcomes in terms of accuracy, and consequently,
on the performance of the simulator.

For example, agent-based simulation is used in [7]. In
this paper, some of the authors of this paper have modeled
a generic blockchain (loosely based on the main Bitcoin
characteristics) to study the likelihood and the effects of some
typical network attacks to blockchains.

BlockSim [8] is a Python simulator that follows a discrete-
event methodology. It aims to specifically consider the model-
ing and simulation of block creation through the proof-of-work
consensus algorithm.

VIBES [9] is another simulator that aims to model and
evaluate large-scale peer-to-peer networks and that it is able
to simulate blockchain systems beyond Bitcoin and to support
large-scale simulations with thousands of nodes.

A different approach is used in [10]. In this case, the
modeling of the blockchain system is obtained by creating
a ”high level” model that is based on queuing theory.

Finally, in [11], Monte Carlo simulations are used for
building stochastic blockchain models.

Depending on the expected outcomes, the different simula-
tion methodologies can be more appropriate. For the modeling
of the ICP, we think that an agent-based approach is best
choice since we need to consider some specific medium-level
details of the communication protocol used in the distributed
system and, a the same time, to provide an easy-to-use
abstraction (i.e., the agents) to be understood by developers
and researchers that lack of specific simulation expertise.

III. THE INTERNET COMPUTER PROTOCOL (ICP)

The Internet Computer Protocol is a novel design of scalable
blockchain that supports smart contracts (supposedly) at web
speed [12]. It has been proposed as a response to the well
known limits of current mainstream blockchains, with respect
to limited scalability and high transaction fees [12]. Ethereum
is currently the most popular smart contracts based blockchain,
however, the latency for operating with this technology can
greatly vary depending on the transaction fees and/or on the
levels of supply and demand in the network. Generally, we can
expect a latency between 30 and 60 seconds and that might not
be optimal (or acceptable) for all kinds of applications [13].

The ICP proposed Chain Key Cryptography [14], [15]
algorithm, which helps the nodes in the blockchain to ef-
ficiently verify smart contracts and generate a new block

without synchronizing the full blockchain. It also introduced a
decentralized autonomous government system, called Network
Nervous System (NNS) [16], aimed to manage the blockchain
and its evolution.

A. The Protocol

The Internet Computer is a network of interacting replicated
state machines. Each state machine executes programs in
discrete rounds: in each round, it takes an input, applies a state
transition function to the input and the current state, it gets
an output, and then obtains a new state. The state transition
function of the Internet Computer is a universal function,
capable of executing arbitrary Turing-complete programs, i.e.,
the Canisters, which are the equivalent of smart contracts.
A fundamental characteristic of this distributed architecture
is that the state machine is replicated in a subnet of nodes
called replicas. Each replica executes a copy of the same
state machine. Since a subnetwork must continue to function
properly even if some replicas are faulty, and it is essential that
inputs be processed in the same order, replicas in a subnet must
execute a consensus protocol. This consensus protocol is based
on a blockchain and on a Byzantine fault tolerance algorithm.
More specifically, the Chain Key Cryptography is a group
of cryptography protocols and primitives including threshold
signatures, public key encryption, and non-interactive zero-
knowledge proofs. We omit the detailed construction of Chain
Key Cryptography, and one may refer to [15] for further
information. Briefly, the Internet Computer protocol verifies
all transactions with a single public key, and traversing through
the full blockchain is a redundant activity.

B. Governance

The Internet Computer has a mix of permissioned and per-
missionless governance, called the DAO-controlled network
model. While each subnet runs a permissioned consensus
protocol, a permissionless Decentralized Autonomous Orga-
nization (DAO) determines rules and permissions of each
subnet. The DAO of the ICP is specifically called the Network
Nervous System (NNS) and it is governed through a Proof-
of-Stake (PoS) consensus mechanism, where the voting power
is determined by how much native token a member has
staked (native tokens and their usage will be discussed in the
following of this section).

NNS is a critical part of the ICP architecture, which oversees
the network and governs all users and applications on the
network. The system itself is open and decentralized, which
means any user may participate in the governance process.
Some notable features of NNS are:

• Upgrading the ICP.
• Registering new users.
• Deciding which entities provide replicas.
• Configuring the topology of the network.
• Providing a public-key infrastructure.

The NNS is realized by a set of canisters on a special system
subnet. The registry canister stores the configuration of the IC,
such as which replicas belong to which subnet and the public

keys associated with subnets and individual replicas. The
governance canister manages the decision making and voting.
The ledger canister keeps track of the users’ native token
accounts and its transactions. The native token is an utility
token called ICP and has three functions: (i) representing the
governance voting power; (ii) minting new value as voting
reward; (iii) incentivizing subnets to create and operate with
canisters. Users can convert ICP to cycles (i.e., burned), and
these cycles are used to pay for Canisters’ operations.

C. Architecture Overview

The ICP has been designed as a four-layer architecture.
The top level of ICP is the canister, which is functionally
equivalent to the smart contract on other blockchains. The
hosting and execution of canisters happens on subnets, and
a subset is a composite of nodes placed in different (and
independent) data centers. Each node is a physical computer
providing storage and computation capability to the ICP. Those
nodes are further organized and operated on different data
centers. As for now, in the current ICP deployment, there
are independent data centers across Asia, Europe, and North
America, and each data center hosts up to 28 nodes [17].
Figure 1 reports a high-level representation of this design
structure. At the time of writing, there are 65 data centers, 35
subnets, and 650 node machines. Each subnet has 13 nodes,
and the NNS subnet has 40 nodes.

Canisters Subnets Nodes Data Centers
n

1
1

n
n

1

Fig. 1. The ICP high-level design architecture.

To achieve the needed fault tolerance, the canisters are repli-
cated across different nodes within a subnet. More specifically,
each replica runs the same canister and jointly notarizes the
final result. Even in case some nodes experience a failure or are
corrupted by malicious users, as long as there are large enough
active nodes, then the canister remains available. In ICP, fault
tolerance is guaranteed for the Byzantine Faults [18].

D. Consensus

Each subnet implements a consensus mechanism to order
the inputs so that all replicas in a subnet can process such
inputs exactly in the same order. This can be guaranteed when
in a subnet of n replicas, at most f < n

3 of the replicas, are
faulty or Byzantine. We emphasize the most critical concepts
in this section and refer to [19] for more details.

As already reported, the ICP consensus protocol is based
on a blockchain. A tree of blocks is grown, starting from a
special genesis block that is the root of the tree. Each block
contains a payload, composed of (i) sequence of inputs and
(ii) the hash of the block’s parent in the tree. As the protocol
progresses, there is always a path of finalized blocks in this
tree, i.e., the chain of blocks.

The blockchain grows in rounds. In round h of the protocol,
one or more blocks of height h are added to the tree. During

each round, each replica is assigned a unique rank pseudo-
randomly. The replica of lowest rank is the leader of that
round and will propose a block to add to the tree. If the
leader is honest and all replicas are synchronized, there is
one and only one block added to the blockchain. However,
if the leader is malicious, or there are some network delays
across the replicas, more than one leader might propose
blocks at the same round. The tree will continue to grow
each round, such that when the finalized path is extended
in round h, the finalized path will be of length h. Thus,
although the time for the response of the system to external
inputs occasionally increases due to faulty replications, the
throughput of the protocol should remain essentially constant.
The ICP introduces notarization and finalization protocols to
avoid such collisions and to guarantee the block grown.

Notarization ensures that there is a published and valid
block in each round. In each round, some of the state of
a subnet will be certified. This per-round certified state is
validated using a threshold signature. For each proposed block,
a replica will decide if the block is valid, and the replica will
notarize the block and broadcast its notarization message if so.
If more than two-thirds of replicas support the notarization,
the block becomes notarized. A block is appended to the
blockchain only if it is notarized.

In some cases, there could be more than one notarized block
in a round, and the replicas have to decide which one they
agree on. If a replica notarized only one block B in this round,
it then finalizes block B by broadcasting a finalization message
”I notarized and only notarized block B.” A block is finalized
if more than two-thirds of replicas support the finalization.
The blockchain will only keep the finalized block and drop
all other blocks in the same round.

E. Message Routing

Updating and maintaining the replicated state of a subnet
is performed thanks to the message routing layer and the
execution layer. Indeed, it is essential that all replicated state
machines are updated in a completely deterministic fashion.
The message routing layer handles two different types of
messages: (i) ingress messages and (ii) cross-subnet messages.
Ingress messages are messages from external users, while
cross-subnet messages are from canisters running on other
subnets.

The input messages are processed by the execution layer.
This updates the state of the canisters on the replicated state
machine and generates the corresponding output messages.
These outputs are then processed again by the message routing
layer. We can also distinguish between two types of outputs:
(i) ingress message responses, that are responses to ingress
messages which may be retrieved by external users; (ii) cross-
subnet messages, generated to contact again another subnet,
maybe in a chain of cross-subnet execution requests.

When a canister starts running, it has one input queue
for ingress messages and various queues for each canister
it is communicating with. During each round, the canister
consumes some inputs from queues and updates the replica

states. The output message will be transferred through a
message routing protocol, which could be input for other
canisters.

When external users want to access/make a request to a
canister on the ICP, they first send a request to the boundary
nodes. This boundary node represents the entry point for the
ICP [12]. The boundary nodes then authenticate the request
and relay the request to the corresponding subnet. Boundary
nodes also provide caching, rate limitation, and denial of ser-
vice protection. Notably, all communication through boundary
nodes uses Transport Layer Security (TLS) for confidentiality,
integrity, and authenticity.

Now that we have introduced the main characteristics of the
ICP architecture, we can focus on the simulator that we have
built as a digital twin of the ICP.

IV. SIMULATOR

The tool employed for building and running our experiments
is LUNES (Large Unstructured NEtwork Simulator), an agent-
based time-stepped simulator that allows for modeling the
behaviour of a large number of simulated entities, which
can communicate with each other via messages exchange.
The software is well suited to simulate protocols that run in
distributed environments, and it is designed to also support
parallel and distributed execution, in order to properly manage
simulations with a large number of simulated entities if
necessary. LUNES has been designed to be easily expandable,
allowing the users to customize the features of the agents and
their behaviour in response to events.

Specifically for the Internet Computer, we used the simula-
tor to reproduce the life-cycle of the ICP protocol, and to test
its conduct under particular conditions. There are several key
parameters of the model, whose values can have a significant
influence on the behaviour of the system. Hereafter we report
the most important:

• DATA CENTERS, which indicates the number of separate
locations where the nodes of the system are located. In
our default configuration, we set this value to 40, which
is the current number of data centers of the ICP.

• SUBNETS, which indicates the number of subnets that
constitute the ICP. In our default configuration, we set
this value to 32, which is the current number of subnets
that make up the ICP.

• BOUNDARY NODES, which indicates the number of
boundary nodes of the system. According to real data,
this value is currently set to 10.

• NODES PER SUBNET, which indicates the number of
active nodes for each subnet. Again, in our default
configuration we took inspiration from the real values
of the ICP, where there are 13 nodes for each subnet.
The exception is the subnet number 0, the NNS, which
is made up of 40 nodes.

• CLIENTS, which indicates the number of clients that
create and spread transactions in the system.

• CROSS SUBNET INTERACTIONS, which indicates the
number of cross transactions required for each user

transaction. Of course, this value is not stable for all the
transactions but for sake of simplicity we kept it constant,
in order to evaluate how the number of cross transactions
affect the performances of the protocol

• BLOCK FREQUENCY, which express, in hundredth of
seconds, the average time required to validate a block
(i.e., every BLOCK FREQUENCY steps, the block vali-
dation procedure starts)

• DATA CENTERS DOWN, which indicates the number of
data centers currently not active.

• ERROR RATE, which indicates the probability for a block
to be created incorrectly.

The total number of agents in the simulator is equal to 40+
(SUBNETS−1)∗NODESPERSUBNET+CLIENTS.
Clients are special simulated entities that only have the task of
creating requests and to forward them to one of the boundary
nodes (the life cycle of a request is represented in Figure
2), while all the other agents are nodes of the ICP, and thus
they are characterized by a specific subnet and data center of
belonging. These agents also maintain locally a list of blocks
and a list of non-finalized transactions and they are directly
in contact with all the other nodes of the same subnet, with
which they frequently exchange information about requests
and blocks.

Boundary
node

Client

Node of
Subnet n

Node of
Subnet n

Node of
Subnet n

Node of
Subnet n

Node of
Subnet x

Node of
Subnet x

re
qu

es
t

to
su

bn
et

n

re
qu

es
t

to
su

bn
et

x

Fig. 2. Life cycle of a request before being inserted into one block

To evaluate the performance of the simulated system, we
mainly made use of two metrics: the delay, which is the time
between the creation of a transaction and its insertion in a
finalized block and the finality rate, which is the percentage
of transactions that actually ends up in a valid block.

A. Simulation Execution

Before starting the execution with LUNES, a preliminary
phase is necessary in order to create two files, listing re-
spectively the features of the nodes (i.e., which subnet they
belong to and where are they located) and the latency between
two locations. In the current version of the simulator, these
parameters are generated randomly, but in a future extension,
for sake of veracity, we could use measurements on the real
ICP system to obtain more realistic configurations.

After the initialization phase, the execution of the simulation
proceeds as follows:

• At each time-step, there is a certain percentage for the
clients that generate a transaction.

• Transactions are directed to a boundary node, that in turn
forwards each of them to an active node in the required
subnet.

• Once the node of the required subnet receives the trans-
actions, it forwards it to the other nodes of the subnet.
Furthermore, if cross-requests are needed, the required
cross-requests are sent to an active node of such subnets.

• At the beginning of each round, the block generation
process starts. The nodes agree on who is the leader,
which (if active) will create the block inserting all the
transactions that do not have unsatisfied cross-requests.
The block is then forwarded to the other nodes in the
subnet. If the leader is not active (or it sends an incorrect
block) then another node will be elected as a leader after
a short time, following the same procedure.

• Once a correct block is received, a notarization message is
created and forwarded among all the nodes of the subnet.

• As soon as 2/3∗NODESPERSUBNET notarization
messages are received, the nodes send a finalization
request for the same block.

• When 2/3∗NODESPERSUBNET finalization mes-
sages are received, the block is finalized and its transac-
tions can finally be considered as validated.

The time granularity of the model (i.e., the size of each
time-step) is one hundredth of a second, and we assume that
the communication time for a message is between 0.01 sec and
0.2 sec. This assumption is based on a set of measurements
that we obtained by using the tool provided in [20].

V. EXPERIMENTS

In our experiments, we tried to evaluate the influence of
certain parameters on the performance of the ICP, such as the
error rate, the number of non-working data centers, the number
of cross-requests required for each transaction, and the number
of nodes per subnet.

If not specified otherwise, the following experiments were
carried out with 2 cross-subnet interactions, a block frequency
of 10 seconds and, as in the deployed ICP system, 32 subnets,
40 data centers and 13 subnets per node.

In Figure 3 is shown that the error rate is irrelevant as
regards the finality rate that is achieved. In fact, such a
parameter would only affect the delay, as reported in Figure 4.
On the other hand, the number of non-functioning data centers
strongly affect the finality rate, since if 1/3 of the nodes of
a subnet are located in inactive data centers, such a subnet
will not be able to notarize and finalize blocks. However, in
Figure 3, we can also notice that the plots of ’0 nodes down’
and ’5 nodes down’ overlap, because with so few data centers
down the 100% of finality rate is always achieved. On the other
hand, increasing the parameters leads to configuration where
certain subnets do not have enough active nodes to carry on
the blocks validation activities.

Figure 5 shows that, similarly to the average delay, also
the variance of the delay is strongly influenced by the error

rate, while the impact of the number of inactive data centers
is almost negligible.

The need of performing cross-requests has also a limited
influence on the delay, due to the additional interactions with
nodes belonging to other subnets. In Figure 7, we can notice,
in fact, that in the scenario with 0 cross-requests required,
the average delay is slightly smaller with respect to the other
cases. Since the cross-requests are executed in parallel [21], the
overhead for performing cross-requests does not rise with the
increase of the parameter (i.e., the only significant difference
is between 0 and 1 or more).

In Figure 6, it is shown the impact of the number of nodes
per subnet. The most relevant differences occur when the
number of non-working data centers is high, with a finality
rate approaching 0% with 100 nodes per subnet and 20 inactive
data centers. In fact, with a great number of nodes it is unlikely
to have at least 2/3 of the nodes in correctly-working data
centers, while in the 13-node-per-subnet scenario the statistical
variance makes it possible to have at least 9 working nodes
for some subnet.

Finally, we report a preliminary evaluation of the simulator
performance. Executing the simulator runs, we noticed that
the only parameter that significantly affected the execution
time is the number of simulated nodes. This increase in the
amount of time required to complete the simulation runs
is caused by the large increase in the number of messages
exchanged between the nodes belonging to the same subnet,
as reported in Table II. In Table I, it is shown the correlation
between the number of nodes per subnet and the time required
to perform 100000 time-steps of the simulation (i.e., 1000
seconds of simulated time). The reported experiments have
been executed under a sequential version of the software, since
with our default configuration (i.e., with 13 nodes per subnet
and 40 subnets), the computational effort is relatively small
and the simulation is mostly communication-bound. However,
the simulator could be easily converted to a parallel/distributed
approach if necessary for speeding up the execution.

TABLE I
CORRELATION BETWEEN THE NUMBER OF SIMULATED ENTITIES AND THE

EXECUTION TIME OF THE SIMULATOR.

Nodes per subnet 13 26 50 100
Execution time 2.7 sec 12.3 sec 43 sec 470 sec

TABLE II
CORRELATION BETWEEN THE NUMBER OF SIMULATED ENTITIES AND THE
NUMBER OF DELIVERED MESSAGES. TESTS WITH 2 CROSS-REQUESTS, 1%

ERROR RATE AND 5 DATA CENTERS DOWN.

Nodes per subnet 13 26 50 100
Delivered Messages per second 14 763 58 563 216 723 773 546

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we showed that agent-based simulators are
well suited to reproduce the behaviour of a blockchain, due
to the opportunity to represent each node involved in the

Fig. 3. Finality rate achieved depending on the error rate and number of data
centers down.

Fig. 4. Average delay depending on the error rate and number of data centers
down.

validation process and to model their behaviours. Specif-
ically, we focused on the Internet Computer Protocol, a
new-generation DLT where multiple sub-blockchains are run
in parallel, allowing for a more efficient management of
the users’ transactions. LUNES, the software employed for
modeling and simulating the ICP, has proved to be highly
efficient, allowing us to simulate hours of blockchain activity
in only a few seconds. The tool has also exhibited good
scalability properties, even though with the increase of the
simulated entities the execution time significantly increases
due to the underlying characteristics of the communication
strategy implemented in the ICP (i.e., gossip).

From our tests, it has emerged that both the error rate in
block creation and the number of non-working data centers
have a significant impact on the metrics, affecting respectively
the delay and the finality rate. On the other hand, increasing the

Fig. 5. Variance of the delay depending on the error rate and number of data
centers down.

Fig. 6. The number of nodes per subnet has a significant influence on the
final results. Error rate set as 0 for these tests.

nodes that participate in the system might probably improve
the robustness of the blockchain, but this does not imply a
greater resilience against data centers failure.

In future works, we might also examine other potentially
problematic aspects of the system. For instance, other than
considering errors in block creation, we could evaluate how the
system would work in case of loss of messages. Furthermore,
we could investigate the possible benefits of employing a
dissemination protocol to forward messages among the nodes
of the same subnet. Currently, due to the small number of
validating nodes in the systems, nodes forward messages
according to a pure broadcast strategy (i.e., by sending the
message to all the other nodes). If the number of nodes per
subnet will be increased in the future, the adoption of specific
dissemination protocols could lead to a more efficient network
traffic management. Another aspect that could possibly be

Fig. 7. Delay depending on the number of cross-requests. Error rate set as 0
for these tests.

tested is the economical sustainability of the system, consider-
ing factors such as the price of the tokens, the cost for inserting
transactions, the reward for blocks creation, etc. Another
aspect that will be addressed is the validation of the current
simulator with respect to the deployed ICP architecture.

We argue that investigations over these kinds of DLTs could
be important to evaluate some of the potential issues regarding
the new generation of blockchains, since we are progressively
moving toward the adoption of technologies that provide for
better guarantees in terms of scalability, speed in transactions’
validation and decentralized governance.

REFERENCES

[1] A. Li, L. Serena, M. Zichichi, G. D’Angelo, S.-K. Tang, and S. Ferretti,
“Modelling of the internet computer protocol architecture,” in To appear
in BLOCKCHAIN’22: 4th International Congress on Blockchain and
Applications, 2022.

[2] Y. Liu, K. Qian, K. Wang, and L. He, “Effective scaling of blockchain
beyond consensus innovations and moore’s law: Challenges and oppor-
tunities,” IEEE Systems Journal, vol. 16, no. 1, pp. 1424–1435, 2021.

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, p. 21260, 2008.

[4] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, vol. 3, no. 37, 2014.

[5] G. Beuster, O. Leistert, and T. Röhle, “Protocol,” Internet Policy Review,
vol. 11, no. 1, 2022.

[6] G.-T. Nguyen and K. Kim, “A survey about consensus algorithms used
in blockchain,” Journal of Information processing systems, vol. 14, no. 1,
pp. 101–128, 2018.

[7] L. Serena, G. D’Angelo, and S. Ferretti, “Security analysis of distributed
ledgers and blockchains through agent-based simulation,” Simulation
Modelling Practice and Theory, vol. 114, p. 102413, 2022.

[8] M. Alharby and A. van Moorsel, “Blocksim: A simulation framework for
blockchain systems,” SIGMETRICS Perform. Eval. Rev., vol. 46, no. 3,
p. 135–138, jan 2019.

[9] L. Stoykov, K. Zhang, and H.-A. Jacobsen, “Vibes: Fast blockchain sim-
ulations for large-scale peer-to-peer networks: Demo,” in Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference: Posters and
Demos, ser. Middleware ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 19–20.

[10] R. A. Memon, J. P. Li, and J. Ahmed, “Simulation model for blockchain
systems using queuing theory,” Electronics, vol. 8, no. 2, 2019.

[11] P.-Y. Piriou and J.-F. Dumas, “Simulation of stochastic blockchain
models,” in 2018 14th European Dependable Computing Conference
(EDCC), 2018, pp. 150–157.

[12] D. Team et al., “The internet computer for geeks,” Cryptology ePrint
Archive, 2022.

[13] L. Zhang, B. Lee, Y. Ye, and Y. Qiao, “Evaluation of ethereum end-to-
end transaction latency,” in 2021 11th IFIP International Conference on
New Technologies, Mobility and Security (NTMS). IEEE, 2021.

[14] J. Groth, “Non-interactive distributed key generation and key
resharing,” Cryptology ePrint Archive, Report 2021/339, 2021,
https://ia.cr/2021/339.

[15] Dfinity, “Chain key cryptography: The scientific breakthrough
behind the internet computer,” Jan 2022. [Online]. Avail-
able: https://medium.com/dfinity/chain-key-technology-one-public-key-
for-the-internet-computer-6a3644901e28

[16] ——, “The network nervous system: Governing the internet computer,”
Sep 2021. [Online]. Available: https://medium.com/dfinity/the-network-
nervous-system-governing-the-internet-computer-1d176605d66a

[17] ——, “Internet computer network status,” June 2022. [Online].
Available: https://dashboard.internetcomputer.org/centers

[18] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti, “Making
byzantine fault tolerant systems tolerate byzantine faults,” in Proceed-
ings of the 6th USENIX Symposium on Networked Systems Design and
Implementation, ser. NSDI’09. USA: USENIX Association, 2009, p.
153–168.

[19] J. Camenisch, M. Drijvers, T. Hanke, Y.-A. Pignolet, V. Shoup,
and D. Williams, “Internet computer consensus,” Cryptology
ePrint Archive, Paper 2021/632, 2021, https://eprint.iacr.org/2021/632.
[Online]. Available: https://eprint.iacr.org/2021/632

[20] WonderNetwork, “Global ping statistics,” 2022,
https://wondernetwork.com/pings.

[21] Dfinity, “What is the internet computer?” June 2022. [Online].
Available: https://internetcomputer.org/docs/current/concepts/what-is-ic/

