This is the final peer-reviewed accepted manuscript of:

Decentralized Health Data Distribution: a DLT-based Architecture for Data
Protection

Conference Proceedings: 5th IEEE International Conference on
Blockchain (Blockchain 2022), August 22 - 25, 2022, Espoo, Finland

Author: Gioele Bigini, Mirko Zichichi, Emanuele Lattanzi, Stefano Ferretti,
Gabriele D'Angelo

Publisher: IEEE

The final published version is available online at:
https://dx.doi.org/10.1109/Blockchain55522.2022.00023

Rights / License:

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other wuses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. The terms and conditions
for the reuse of this version of the manuscript are specified in the publishing policy.
For all terms of use and more information see the publisher's website:

https://www.ieee.org/content/dam/ieee-org/ieee/web/orag/pubs/
author version faqg.pdf

This item was downloaded from the author personal website (https://mirkozichichi.me)

When citing, please refer to the published version.

https://dx.doi.org/10.1109/Blockchain55522.2022.00023
https://mirkozichichi.me/
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/author_version_faq.pdf
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/author_version_faq.pdf

Decentralized Health Data Distribution:
A DLT-based Architecture for Data Protection

Gioele Bigini*, Mirko Zichichif, Emanuele Lattanzi*, Stefano Ferretti*, Gabriele D’Angeloi
*Department of Pure and Applied Sciences, University of Urbino, Italy
TOntology Engineering Group, Universidad Politécnica de Madrid, Spain
iDepartment of Computer Science and Engineering, University of Bologna, Italy
g-bigini @ campus.uniurb.it, mirko.zichichi@upme.es, {emanuele.lattanzi,stefano.ferretti} @uniurb.it, g.dangelo@unibo.it

Abstract—The management, protection and sharing of sensitive
data such as those associated with the health domain are crucial
in enabling personal care and contributing to worldwide medical
advancements. Distributed Ledger Technologies (DLT's) allow for
data protection compliant solutions in untrusted contexts that
guarantee data immutability, protection and transparency when
needed. This paper proposes an architecture based on DLTs,
Smart Contracts and Distributed File Storage (DFS), enabling
user data sovereignty, confidentiality and secure access control.
A use case on health data is presented, where we apply a
combination of DLT, DFS and an access control mechanism to
allow users to distribute their data. Finally, we show an ex-
perimental evaluation of the overall architecture to demonstrate
the feasibility of implementing practical DLT-based healthcare
solutions. The results are collected through independent tests,
available opensource, that verify the system’s response time in
each of its functions and as the load increases. The results are
promising and show that the system is feasible and can scale as
the load increases.

Index Terms—Distributed Ledger Technology, Smart Con-
tracts, Health Data, Distributed Storage

I. INTRODUCTION

Digital technologies are continuously transforming society.
Personal devices are foundational to this transformation, where
individuals are the primary sources of information generation.
Storing data in inaccessible and disconnected data lakes makes
them inaccessible to the public for innovation [1]. Following
this, the interest in data ownership arises first and foremost
from the lack of transparency in how data is collected, stored
and used by different services and companies. In this regard, a
low effort has been spent on easing the data management for
an individual to understand and manage the risks associated
with exploiting his private data.

Healthcare could enormously benefit from the ability to
share information, transitioning from centralized to decentral-
ized system architectures. Individuals can make a substantial
contribution through personal devices to science, specifically
in personalized medicine [2], [3]. Unfortunately, there are
strong barriers represented by privacy and security for the
health sector: sharing information without the individual’s
explicit consent constitutes a substantial violation of an in-
dividual’s rights. Regulations such as the European Union’s

This work has received funding from Regione Marche with DDPF n. 1189
and from the EU’s Horizon 2020 research and innovation programme under
the MSCA ITN grant agreement No 814177 LAST-JD-RIoE.

General Data Protection Regulation (GDPR) [4] help promote
a pro-individual view. Specifically, these regulations impose
many accountability measures on actors responsible for pro-
cessing personal data and assign several rights to individuals.
However, these do not always address the lack of transparency
in managing personal information and the technical ability
to make personal data portable, i.e. data interoperability [4].
We argue that a vision toward including the individual in the
personal data flow could be reached by developing a user-
centred framework for managing personal data. One such
is that the individual owns control over data assets and
companies comply with the legislation. It can be achieved
by decoupling file storage, access control mechanisms, and
application logic to guarantee data protection and security.
This would pave the way for individuals’ privacy needs and
for a significant impact on the capabilities the healthcare field
could aim for, as well as a unique common data lake and
market [5], that capitalizes on the data interoperability for the
social good [6]-[8].

The objective of this work is to provide a decentralized
access mechanism that conveys a practical way for individuals
to store, protect, and share their personal data, i.e. health data
generated through mobile personal devices. A cryptographic
method is in charge of encrypting each piece of information
stored in a Decentralized File Storage (DFS). A Distributed
Ledger Technology (DLT) stores universal, immutable re-
source identifiers to the data and provides smart contracts
to ensure the data integrity verifiability and manage Access
Control Lists (ACLs) associated with each piece of data.
The paper’s contribution is the following: we propose an
architecture based on the use of DLT, smart contracts and DFS.
The latter allows for the decentralized distribution of health
data yet guarantees data sovereignty to users, confidentiality
and secure access control. The access control is implemented
using distributed authorization, thus envisioning a decentral-
ized context. Moreover, we present a health-data-related use
case and experimental evaluation of the overall architecture.
The use case demonstrates, through a data-sharing scenario,
how the proposed system can be exploited. On the other hand,
the system evaluation shows that the system we proposed is
viable for such a use case through the results in terms of
performance and latency.

The remainder paper is organised as follows. Section II

presents the background, while Section III describes related
work. Section IV specifies the system architecture. In Section
IV we describe a health data sharing use case. Performance is
evaluated in terms of measured latency in Section VI before
conclusions, in Section VII.

II. BACKGROUND

In this section, we describe the technologies that will be
used for building up the proposed software architecture.

A. Distributed Ledger Technology (DLT)

The resistance to manipulation makes DLTs a very promis-
ing technology for developing new types of applications where
immutability and transparency represent a requirement. Exam-
ples of these applications can be found in general-purpose
blockchains that implements smart contracts, e.g. through
Ethereum [8], [9] or Hyperledger Fabric [10].

A smart contract is a code deployed in a DLT environment
or the source code from which such code was compiled [11].
This code is executed deterministically by different partic-
ipants in the DLT, who receive the same inputs and then
perform a computation that leads to the same outputs. When
a smart contract is deployed on the DLT and the issuer is
confident that the code embodies the intended and proper
behaviour (e.g., by reviewing the code), then transactions
originating from that contract do not require the presence of
a third party to have value. This principle is based on the
assumption that most DLT nodes are honest (i.e. the opposite
of an attacking node) and follow the same protocol.

B. Decentralized File Storage (DFS)

A Decentralized File Storage (DFS) offers an alternative
way to store files to the traditional client-server models,
i.e. where a domain name is provided and is then translated
to an IP address [12], [13]. A DFS comprises a network
of peer nodes that have their storage and follow the same
protocol for content storing and retrieval. In Content-Based
Addressing, contents are directly queried through the network
rather than establishing a connection with a server. In order
to know which DFS node in the network owns the requested
contents, it is possible to rely on a distributed hash table in
charge of mapping the contents, i.e. files and directories, to
the addresses of the peers owning such data. DFS follows
this approach and offers higher data availability and resilience
using data replication.

C. Decentralized Access Control Mechanisms

The objective of Access Control Systems (ACS) is to
regulate access to system resources by enforcing permissions
based on a set of system policies to determine who can access
information. Centralized ACS rely on a single authority to
access the data and, therefore, carry the risk of a single point of
failure and the loss of privacy [14]. DLTs solve the single point
of failure by providing the means to implement decentralized
ACS. Different approaches are : (1) Discretionary ACS, which
enables the management of data stored outside of the DLT

through the access control policy stored on the ledger [15];
(2) Mandatory ACS, which constrains the ability of a subject
to access data through smart contracts [16] ; (3) Role-based
ACS, allows to achieve authentication based on user roles [17];
(4) Attribute-based ACS, grants or denies user requests based
on user’s attributes, object and environment conditions [18].

D. Cryptographic Schemes

In this work, we refer to the cryptographic schemes de-
scribed in the following.

1) Proxy Re-Encryption (PRE): The Proxy Re-Encryption
offers a scalable protocol where it is not necessary to know
the recipient of data in advance [19]. It is useful when com-
munication between an arbitrary number of data owners and
consumers is dynamic. PRE is a type of public-key encryption,
where an untrusted proxy entity transforms a ciphertext c,
encrypted with a public key pk;, into a ciphertext decryptable
with a private key sko, without learning anything about the
underlying plaintext. This is possible using a re-encryption
key rk1_o generated by the data owner who has the key pair
(pk1, sk1) and that divulges (to the proxy) the authorisation of
access to the plaintext to a data consumer holding the keypair
(pk‘g, Skg)

2) Threshold Scheme: A (t,n)-threshold scheme can be
employed to share a secret among a set of n participants,
allowing the secret to being reconstructed using any subset of
t (with t < m) or more shares, but no subset of less than t.
In a network where more than one server keeps secret shares,
a mutual consensus can be reached when ¢ nodes provide the
shares to a secret recipient, enabling the secret to be known.
This can be used to provide data protection to a user who is
sharing a secret since none of the servers can obtain the whole
secret without the help of other t — 1 servers.

III. RELATED WORK

With the emergence of the first proposals to use DLT-
based systems beyond finance, i.e. digital currencies, some
researches have already found a relationship between DLT
and personal data sharing [15]. The general approach, in this
context, is to store access control policies on DLTs securely so
that the applicant can be made aware of his or her permissions
to access his or her personal data stored outside the DLT [8],
[9], [13], [15].

Yan et al. [9] present a Personal Data Store (PDS) that
enables the collection, storing and fine-grained access to their
data using a (¢, n)-threshold scheme. Their solution of sharing
personal information in pieces was innovative but expensive
and not GDPR compliant, i.e. the system stores personal data
directly on the DLT [20]. Another possible approach is to
program access control policies as smart contracts in order to
manage control automatically in compliance with GDPR [10].
Koscina et al. [21] enable healthcare data exchange through
a distributed architecture, with the focus on consent given
through smart contracts. In their system users keep a digital
copy of their medical data in a personal data account that can
be hosted on any cloud-based data management service.

DLT Node

DLT Node

Data Producer

DLT Node

DLT Node

Broker Layer ?

[DLT Layer

[DFS Layer

[Access Control Layer

Data Consumer

Fig. 1. Architecture of the Decentralized Health Data Sharing.

Other research efforts introduce the usage of mobile devices,
i.e. the smartphones [2] and reputation systems to encrypt and
share data [22]. In other cases, the focus is on the effective
compliance of these systems with the healthcare sector [23],
or the possibility of providing an identity to the participants
anticipating a health digital identity system. Other solutions
introduce an economic incentive for those who disseminate
their health data [24] since these effectively contribute to a
piece of greater knowledge for personalised medicine.

To the best of our knowledge at the time of writing, no
related works provide a solution for the IoMT environment
involving the usage of Hyperledger Fabric, smart contract
and threshold schemes based on PRE for the encryption keys
management while providing an experimental evaluation. We
can only refer to this work [25], which provides a similar
architecture but imply Ethereum without providing any per-
formance evaluation.

IV. DECENTRALIZED HEALTH DATA SHARING
ARCHITECTURE

In this section, we describe our proposed system architec-
ture. Emphasis is given to the specific case of health-related
personal data, making up the main architectural drivers of our
design. The system is composed of different technologies that
we describe with the aid of Figure 1:

« Broker Layer - the APIs which a User Interface can

exploit to interact with the other system components.

« Distributed Ledger Technology - the underlying net-
work of nodes that maintain the ledger that validate
(through the untamperability property) data exchanged by
the peers involved.

« Decentralized File Storage Layer - the component that
deals with the actual storage of encrypted personal data.

o Access Control Layer - a set of technologies and
schemas that enable the access policies declaration
(through smart contracts) and the actual data access
(through keys distribution).

This architecture was built with a set of principles, func-

tional and non-functional requirements in mind: (i) Data
Validation: the integrity of data generated by (or on behalf)

of users must be guaranteed and verified. To this end, the
system takes full advantage of the untamperability property
of DLTs. (ii) Traceability: not only the integrity of personal
data, but also their life cycles must be guaranteed and verified.
Also in this case, the system takes advantage of DLTs and their
smart contract features. (iii) Privacy-by-Design: while we need
to make it difficult to change or delete data from the ledger,
at the same time, if we intend to comply with regulations
(i.e. GDPR), the system still requires the modification or
deletion of data under certain circumstances, e.g. GDPR’s
“right to be forgotten”. This is one of the main breaking points
between the DLTs and the GDPR [20] that led us to the
use of off-chain DFS, i.e. data not stored directly on-chain.
(iv) Data Protection: cryptography plays a key role in the
authenticity and integrity of the data and its treatment among
all the agents in the data processing chain. For this reason,
we refer to advanced cryptographic techniques [26] to verify
the authenticity of data and to implement users’ preferences
in maintaining their privacy, i.e. authorized access.

In the following, we are going to devise each system
component with a dedicated sub-section.

A. Broker Layer

The Broker Layer is responsible for the interaction with
the external environment. It manages the interaction with the
access control layer and the decentralized file storage. From a
logical point of view, the functioning of the layer is depicted in
Figure 1. This layer handles the interactions with the system
from the outside. Whenever an interaction attempt is made,
the broker dialogues with the corresponding underlying DLT,
DFS and access control layers. This ensures that the system is
modular in the sense that new layers can be easily added, but
also ensures that the only method of access to critical modules
is through a broker.

B. Decentralized File Storage Layer

As said earlier, DLTs are designed to make it difficult to
be immutable. Therefore, one approach to meet the Privacy-
by-Design requirements is to implement off-chain storage of
personal information [20].

The DFS network stores and shares data, files and direc-
tories in the form of objects that are identified by a content
identifier (CID). This CID is the result of the application of a
hash function to a piece of data and it is also used to retrieve
it in the network. Once a piece of data is published in the off-
chain storage, i.e. the DFS, the returned CID can be employed
to retrieve it and will enable the verification of its integrity.
Thus, for instance, when the piece of data is firstly uploaded
into the system, it becomes a DFS object, and then then it
is asynchronously referenced through its CID into a DLT. It
would constitute the principle of hash pointing. If any other
node in the network tries to share the same exact object, the
CID will always be the same.

Thus, in our system, health data are stored encrypted in
a DFS and then referenced in a DLT. Data protection is
maintained due to the fact that all data is encrypted at the User
Interface/Core level. This solution has the additional benefit
of improving performances and providing higher availability
for data reads and writes without introducing central trusted
parties [13].

C. Distributed Ledger Technology Layer

At the core of the architecture, the DLT layer provides
a network of peer nodes holding a ledger that ensures im-
mutability and transparency with respect to the records to be
stored in the smart contract. This makes it possible to store
the entire history of transactions between the various peers and
consequently of the requests made to the access mechanism. It
is important to emphasise that this is a permissioned network,
in which it is possible to establish consensus policies. The
choice is based on the fact that this network is also accepted
under the GDPR, as opposed to a public DLTs, which is
transparent outside the participants and would allow external
actors to view information [20]. Generally speaking, as soon
as a request is received, the broker is able to dialogue with
the peer that takes charge of the readings and writings on the
ledger through the smart contract. Every time an operation is
carried out on the smart contract, it is reflected to the network
peers that keep the distributed ledger integrity.

D. Access Control Layer

Smart contracts are part of the proposed architecture where
access control logic to share data is performed. Through these,
access to the data can be purchased or can be allowed by
the owner. The use of data, then, is authorized only to users
indicated by the policies in a smart contract owned by the
data subject. Hence, due to the presence of smart contracts,
no direct interactions are needed between the data owner and
users interested in his data. In practice, each piece of data
stored in the DFS is referenced in a specific smart contract
through the CID of the data or of the directory. One simple
policy would be for the smart contract to maintain an Access
Control List (ACL) that represents the rights to access one
or more data. In the rest of the paper, we will focus on the
application of such kind of policy. Once a user is eligible to
access certain data, i.e. he is in the related ACL on a smart

contract, then he/she will also be eligible to obtain the key
used for encrypting the data.

1) Cryptographic Scheme: We provide a general overview
of the cryptographic scheme without going into the details of
the implementation in order to convey a clear understanding
of the whole access control layer. We refer to a hybrid
cryptographic scheme making use of both asymmetric and
symmetric keys. The general principle is that each piece of
health data is encrypted using a symmetric “content” key k
and then this key is encrypted using an asymmetric keypair
(pkxErm, skxena). This consists of a Key Encapsulation
Mechanism (KEM) [27] in which the key is encapsulated and
the capsule is distributed.

2) Key Distribution Component: The presence of an off-
chain key distribution component is necessary: i) to free the
owner of the data from the burden of managing the distribution
of keys, which can be very costly in the case of fine-grained
access; ii) to complement the public execution operations
of smart contracts in the DLT, since it is not possible to
independently release content keys or decrypt messages.

In our proposal, the DLT nodes are in charge of enforcing
the access rights that are specified in the smart contracts ACLs.
We take advantage of the high degree of trust that a DLT
offers for the data written in the ledger, and therefore focus
on the trust given to the entities that have to read this data
and follow the correct policy. Indeed, DLT nodes rely on the
ACLs to make so that the entitled data consumer can obtain
the content key, and thus access the piece of data. In order
to provide complete data protection to the data subject, only
the entitled recipient of health data must obtain the key and
not DLT nodes. For this reason, we make use of a (¢,n)-
threshold scheme to share content keys among the network,
and in particular, shares of the content key’s capsule. When
a data consumer with keypair (pk.,sk.) is entitled to access
some data in a smart contract ACL, he requests the release of
the associated capsule to some DLT nodes through a message
signed with pk.. Upon consumer request, the DLT nodes check
if this one is entitled to through interaction with the smart
contract. If this is the case, i.e. the data consumer is on the
ACL, each DLT node starts the operation for releasing the
part of the capsule that was shared with him previously by
the data owner. Once the data consumer gets all the shares of
the capsule, their reconstruction provides the key k needed to
decrypt the desired data stored in the DFS.

We refer to a Threshold Proxy Re-Encryption (TPRE)
scheme for the data capsule distribution. The capsule, initially
obtained from the pkx gy by the data owner, can be re-
encrypted by each contacted DLT node using a re-encryption
key pko_,c generated by the owner. The re-encrypted capsule,
then, can be decrypted using sk. by the consumer to obtain
the kpgy needed to decrypt the data. TPRE offers more
guarantees rather than a simple PRE scheme that usually
involves only one semi-trusted proxy node. One proxy node
only can collude with the consumer to attack the data owner’s
private key. TPRE, instead, uses a (t,n)-threshold scheme to
produce “re-encryption shares” in such a way that these can

only be combined client-side by the data consumer and not by
any t — 1 subset of proxies.

V. HEALTH DATA USE CASE

Nowadays most information is collected through digital
channels and applications. Due to the regulatory frameworks,
health data generally resides in centralized locations. Mobile
personal devices generally perform data pre-processing on-
board, with the goal of obscuring personal information, and
favouring pseudonymization [26]. In most cases, data is not
directly accessible and, when it is, then takes the form of
open datasets, where anonymization techniques are applied to
completely remove any link to the individuals who generated
it and potentially reducing the overall information.

In this work, we focus on sensitive health data produced by
a mobile devices in which the collection process is known.

A. Traditional vs. DLT-based Healthcare

Traditional healthcare infrastructures are mostly self-
managed or assigned to a third party. These traditional systems
generally impact data accessibility, as the provider is not
willing to share them for security reasons. The infrastruc-
ture to protect sensitive data is built-in trusted infrastructure
using techniques such as encryption for fine-grained access
control. Moreover, the amount of information from users’
mobile devices is usually not collected, and even if it is, it
is progressively more difficult due to the scalability of data
storage and growing concerns about privacy, security, and
infrastructure costs [28].

DLT-based systems work with a different philosophy be-
hind, including individual health data. The system we propose
falls in this category. The proposed decentralized health data
sharing architecture offers the possibility of transacting data
between institutions guaranteeing provenance and immutabil-
ity. Our architecture aims to put a focus on decentralized
authentication and authorisation of individuals’ health data.
The DFS is responsible for facilitating the data sharing and
providing secure information storage, while smart contracts are
used to reach consensus, enabling secure access, processing,
and sharing of medical data among diverse e-health entities.

B. Internet of Medical Things Scenario

With the advent of big data, every data collected could
be used for enhancing new medical studies and personalised
medicine. Patient’s health data is generally composed of two
main parts: general personal information and medical health
records. Examples of personal information include age, gen-
der, and weight, while medical health records depend on the
topic, i.e. medications, treatments.

In this work, we consider a platform collecting postural
stability data where the patient is storing sensitive personal
data along with the results of the measurements he performs
[29]. The detail of these data can be found in Table I. We
consider a scenario where a system user, namely Alice, collects
her data through her mobile device. We refer to her as the
data owner. Another user of the system is her physiotherapist

TABLE I
EXAMPLE OF HEALTH DATA

Health Data
Measurement Data

Sensitive Data

Age Stabilogram
Gender Time Domain Features
Weight Frequency Domain Features

Postural Problems Structural Features

Alice : DataOwner
1: storeDLT(CID, pk_Bob)

Bob : DataConsumer

| 2: storeKfrag(kfrag_i, pk_Bob| 1

2.1:reencrypt(kfrag_i, pk_Bob)

[cfrag_i

|
|
|
|
|
|
|
|
|
2.2: OK() £ —— |
ﬁ] 3; getCfrag(CID, signat, pk_| Bob)u
|
|
|
|
|
|
|
|

TU

3.1 verify(signat, pk_Bob)

ﬂ

‘DK

<
3.2: checkDLT(CID, pk_Bob)

ok

|
|
|
L

3.3:cfrag.i() 8

X \

Fig. 2. UML Sequence Diagram showing the main operations carried out
during the testing by the simulated actors.

Bob, i.e., the data consumer. The idea is to share Alice’s
health data collected with Bob that can use to provide a better
medical evaluation for Alice. Thus, Alice will first send her
encrypted data to the DFS and contact the ACL to record all
the necessary information for third party authorization. She
distributes the keys to the DLT network to authorize her doctor.
The DLT will retain the authorizations over time and serve as
evidence of the transaction. Once the process is successful,
Bob is authorized and has the opportunity to look for Alice’s
health data. He will leverage the ACL in the opposite way
of Alice, by recovering all the distributed parts from the DLT
and decrypting the original health data.

VI. PERFORMANCE EVALUATION

This section describes the evaluation of the implemented
architecture along with the executed tests. Each layer described
in Section IV is described in the following:

o The DLT Layer deployed is based on the Hyperledger
Fabric Framework [10]. It is a permissioned ledger where
all the participant’s identities are known and authenti-
cated. The smart contract is implemented by exploiting
the Fabric’s Chaincode.

e The Access Control Layer includes a smart contract, a
TPRE scheme and a key distribution mechanism. Chain-
code allows storage and retrieval of relevant information
to the access mechanism in a shared and immutable way.
Furthermore, the TPRE scheme and keys distribution are
built using the Rust language and are based on the Umbral
protocol [30].

Store DLT

Store KFrags

Get CFrags

25000

20000

15000

10000

Avg latency (ms)

5000

Thresholds
[t
2
- 3

M

20 20 40

60 80 100 20 40 60 80 100

40 B0 80 100
E 500
[=]
“= MMMl
0 T T —fr T

10 20 30 40 50 60 70 B8O 90 100

10 20 30 40 50 60 70 BO 90 100

10 20 30 40 50 60 70 B8O 90 100

Requests per second (reg/s)

Fig. 3. Average latency per operation.

o The DFS layer is based on the IPFS technology, which
allows storing and accessing data on the IPFS network
in a persistent but not permanent condition, which means
that data stored on IPFS can eventually be deleted.

o The Broker Layer module exposes an API through which
the users can interact with the system.

The tests and datasets can be found in [31]. We do not go
through DFS performances as this is already documented in
previous works and it is not the main focus of this work,
ie. [13].

A. Network Setup

In order to perform the tests, we simulated the issuing of
new keys and the access to these from several data consumers.
Specifically, we simulated a set of data owners injecting
new capsules into the system and a variable number of data
consumers wanting to access these capsules. The simulation
starts with a client acting both as a data consumer and owner
(a personal computer with internet access) and interacting
with the real DLT network. The network deploys four nodes
geographically distributed: two of them in Europe, while the
other two in the USA and China respectively, the idea is to
represent a real case scenario. The virtual private servers used
as node instances have the following specification: two cores,
4 GB of RAM, 50 GB storage and run Ubuntu 18.04 LTS. For
more information, one of the four is responsible for syncing
the ledger. In fact, the permissioned DLT deployed requires
a node for transaction ordering because of its deterministic
consensus algorithm.

B. Testing Workflow

The testing flow needs several pre-processing steps. First, it
is necessary to configure the environments of all the simulated
entities. Then, for each actor, a set of asymmetric keypairs,
e.g., (pkp, skp), is created for encrypting/decrypting data and
for digitally signing. A piece of data is encrypted for a data
consumer and the associated capsule (see Section IV-D1) is
created and distributed to the DLT nodes. This operation is
independent from any data consumer request.

The foremost step is executed in parallel for each simulated
data consumer. This step consists of a request composed of
three primary operations shown in Fig. 2:

e StoreDLT - it is the operation where a data owner
indicates to a DLT node to add a public key pkp to the
ACL in the smart contract for a specific CID, i.e., the
owner instructs the DLT nodes to give access to the data
represented by the CID to the consumer pkp.

« StoreKfrags - it consists of a series of methods that
perform the actual key distribution (see Section IV-D2).
During the pre-processing step, a capsule is created
for each piece of data shared. The data consumer uses
the capsule to create a fragmented re-encryption key,
following the (¢, n)-threshold scheme. The re-encryption
key is unique for each data consumer. The single re-
encryption key fragments are unique for each DLT node.
We call these key fragments “kfrags” for simplicity. Each
of the n DLT nodes, thus, receives a unique kfrag; and can
perform a re-encryption for the indicated pkp (step 2.1
in Figure 2). The result is a fragment of another capsule
that will be used by the data consumer. We call these
capsule fragments “cfrags” for simplicity.

o GetCFrag - The data consumer requires at least ¢ cfrags
to reconstruct the capsule needed for the decryption.
Thus, it performs a remote procedure call using the
getCFrag operation, to ¢ DLT nodes. It also provides
in such requests the signature of a message as a way
to authenticate itself (in this step, we skipped the whole
challenge-response mechanism in which the server, i.e.,
the DLT node, sends to the client, i.e., the data consumer,
a challenge message with a nonce to sign). Each DLT
node autonomously verifies the signature (step 3.1 in
Figure 2) and checks if the related pkp is present in
the ACL related to the indicated CID (step 2.2). If so, it
returns the unique cfrag, to the data consumer.

The final post-processing step involves each data consumer
aggregating the cfrags, obtaining the content key and decrypt-
ing the piece of data.

Threshold 1 Threshold 2 Threshold 3

Reqfs
—— 10
60000 —_— 0

- 50

o
80

8
2
2
8

8
2
]
8

Avg latency (ms)

A

w000 fe \/—r'\/"
- ',r“f'v-v—/‘} M_M‘\
10000 4 N e Y IR &

1 4 7 10 1 4 7 10 1 4 7 10
i-th request

Fig. 4. Average Latency per i-th request step and requests per second.

C. Parameters and Metrics

We observed the following parameters and metrics in the
testing:

o Controlled parameters - the number of DLT nodes n
was set to 3. The number of independent tests was set
to 3, and in each test, the main step described previously
was repeated 10 times for each data consumer (from now
on, this main step will be referred to as request). In this
case, the time between a request and the next one was
given by a Poisson Process with a mean A = 1000ms.

« Independent parameters - the threshold t varies in the
tests from 1 to 3. The number of requests per second
depend on the data consumers, that vary from 10 to 100,
with an increase of 10 each time.

o Dependent metrics - the latency for a response to a
request is the measure we are interested in. As well as the
latency in encryption, decryption and kfrags generation
operations.

D. Results

We recorded the latency for each operation, including the
latency of network transmissions. Only the kfrags generation
and encryption/decryption latencies do not include network
transmissions’ latency. Moreover, no errors were recorded
during the whole set of tests.

1) Requests per second: Recall that a request is the execu-
tion in sequence of StoreDLTs, StoreKFrags and GetCFrags.
Thus, Figure 3 shows the results for each operation when the
request per second is increased for different values of t. In
general, results show a strong dependence on the requests per
second value and also on the ¢ value, but the three operations
behave differently. Moreover, we see a clear inflection point
after 40 requests per second, especially for StoreDLTs and
GetCFrags operations. The GetCFrags operation (rightmost
plot in Figure 3) is the one where the difference in the three
thresholds curves’ spread is more evident. This is because the
operation heavily depends on ¢, i.e. the data consumer makes
a request to ¢ nodes. In the other two operations, the effect of
t is indirect because the number of nodes to which a request
is made is fixed.

1000

Thresholds

Latency [Requests per sec (ms [reg/s)
|) O =
I

60000
50000

240000

3 30000 !i ‘i
20000 xl I | I
a0 IOE RER

10 20) 50 60 0 80 %0 100
Requests per second (req/s)

Laten:

Fig. 5. Average Latency per requests per second.

2) Threshold value: Figure 4 shows the results when in-
creasing the ¢ value and the requests per second for each i-th
request, i.e. it shows the performances for each subsequent
request instead of aggregating all requests through their mean.
In this case, results show how the increase of ¢ amplifies
the response delay due to the increase in the requests per
second. Specifically, this temporal point of view shows that
a low t value (i.e., t = 1) keeps the response latency almost
stable, while a higher ¢ causes an accumulation of delay in the
response, which worsens the performances (i.e. with t = 2, 3,
from the 5-th request to the 9-th one).

3) Scalability: Figure 5 shows the results for the total
average latency of all operations when the requests per second
increase. The plot at the top normalizes the latency for the
number of requests per second made to the network, i.e. the
recorded average latency is divided by the requests per second.
This gives a measure of scalability, meaning that when increas-
ing the requests per second, the normalized latency values
should remain equal to the previous (or best performing) step
in an ideal scenario (the dotted lines in Figure 5 show the
minimum normalized latency for each t). More in general,
we obtained a linear dependency on the number of requests
made concurrently. The optimal-case scenario is deducted by
considering latencies below 20 seconds on average, which
seems can be reachable when we set { = 2 and 50 data
consumers. In this case, in the network of 3 DLT nodes, each
node handles 16.7 requests per second. In the worst case,
the average latency reaches almost 60 seconds, i.e. when the
configuration is set to ¢ = 3 and 100 data consumers, each
DLT node handles 33.3 requests per second. The best-case
scenario (in terms of acceptable request-response delay) seems
to happen when each node handles about 13.3 request per
second, i.e. 40 data consumers, with a response latency ranging
between 13 and 19 seconds, depending on the threshold.

Finally, we focus on two operations executed only once per
key or payload and happen only on the data owner or data
consumer node. Thus we measured these without considering
network transmission. Results show a linear dependency of the
kfrags generation on the ¢ value that does not cross the 100ms

even at higher thresholds (50) and denoting an exponential
behaviour for the encryption and decryption operations, lead-
ing to a system under pressure when the payload’s dimension
overcome the 10kB.

VII. CONCLUSION

The management, protection and sharing of sensitive health
data are crucial in enabling personal care and contributing
to worldwide medical advancements. Health data exploita-
tion could improve patient care and enhance the delivery of
health care services. However, besides the benefits, there is
widespread concern that patients’ privacy and security of med-
ical data could be compromised. In this paper, we introduced
a DLT-based access mechanism based on DLT, which could
be used to provide more robust security while preserving
data protection. The system could ensure that patients have
complete access control to their records, stored securely on
DFS and only verified participants can interact with patients’
sensitive data. Implementing the ACL on the smart contract
helps securely share health information among all parties
on the network while providing patients’ data protection.
The experimental evaluation of the overall architecture shows
the viability of implementing practical DLT-based healthcare
solutions over decentralized systems. Specifically, our con-
figuration handles 40 requests per second with a reasonable
response time in the best-case scenario.

As future work, we plan to deploy our solution in a network
with a greater number of nodes to test its scalability further. In
addition, we are interested in exploiting the expressiveness of
smart contracts to encode more complex data access policies.

REFERENCES

[1] W. Christl, K. Kopp, and P. U. Riechert, “How companies use personal
data against people,” Automated Disadvantage, Personalized Persuasion,
and the Societal Ramifications of the Commercial Use of Personal
Information. Wien: Cracked Labs, 2017.

[2] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne,
“Blockchain for secure ehrs sharing of mobile cloud based e-health
systems,” IEEE access, vol. 7, pp. 66792—-66806, 2019.

[3] G. Bigini, V. Freschi, and E. Lattanzi, “A review on blockchain for
the internet of medical things: Definitions, challenges, applications, and
vision,” Future Internet, vol. 12, no. 12, p. 208, 2020.

[4] P. De Hert, V. Papakonstantinou, G. Malgieri, L. Beslay, and I. Sanchez,
“The right to data portability in the gdpr: Towards user-centric interop-
erability of digital services,” Computer law & security review, vol. 34,
no. 2, pp. 193-203, 2018.

[5] European Commission, “A european strategy for data,” 2020.

[6] M. Furini, S. Mirri, M. Montangero, and C. Prandi, “Privacy perception
when using smartphone applications,” Mobile Networks and Applica-
tions, vol. 25, p. 1055-1061, June 2020.

[71 M. Zichichi, S. Ferretti, and G. D’ Angelo, “A distributed ledger based
infrastructure for smart transportation system and social good,” in
2020 IEEE 17th Annual Consumer Communications & Networking
Conference (CCNC), pp. 1-6, IEEE, 2020.

[8] M. Zichichi, S. Ferretti, and G. D’Angelo, “A framework based on
distributed ledger technologies for data management and services in
intelligent transportation systems,” IEEE Access, pp. 100384-100402,
2020.

[9] Z. Yan, G. Gan, and K. Riad, “Be-pds: protecting privacy and self-
sovereignty through blockchains for openpds,” in 2017 IEEE Symposium
on Service-Oriented System Engineering (SOSE), pp. 138-144, 1EEE,
2017.

[10]

(1]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
(31]

M. Davari and E. Bertino, “Access control model extensions to support
data privacy protection based on gdpr,” in 2019 IEEE International
Conference on Big Data (Big Data), pp. 4017-4024, IEEE, 2019.

P. De Filippi, C. Wray, and G. Sileno, “Smart contracts,” Internet Policy
Review, vol. 10, no. 2, 2021.

J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.

M. Zichichi, S. Ferretti, and G. D’ Angelo, “On the efficiency of decen-
tralized file storage for personal information management systems,” in
Proc. of the 2nd International Workshop on Social (Media) Sensing, co-
located with 25th IEEE Symposium on Computers and Communications
2020 (1SCC2020), pp. 1-6, IEEE, 2020.

M. Jemel and A. Serhrouchni, “Decentralized access control mechanism
with temporal dimension based on blockchain,” in 2017 IEEE 14th
International Conference on e-Business Engineering (ICEBE), pp. 177—
182, IEEE, 2017.

G. Zyskind, O. Nathan, et al., “Decentralizing privacy: Using blockchain
to protect personal data,” in 2015 IEEE Security and Privacy Workshops,
pp. 180-184, IEEE, 2015.

M. Zichichi, S. Ferretti, G. D’Angelo, and V. Rodriguez-Doncel, “Per-
sonal data access control through distributed authorization,” in 2020
IEEE 19th International Symposium on Network Computing and Appli-
cations (NCA), pp. 1-4, IEEE, 2020.

J. P. Cruz, Y. Kaji, and N. Yanai, “Rbac-sc: Role-based access control
using smart contract,” leee Access, vol. 6, pp. 12240-12251, 2018.

D. D. F. Maesa, P. Mori, and L. Ricci, “Blockchain based access
control,” in IFIP international conference on distributed applications
and interoperable systems, pp. 206-220, Springer, 2017.

G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy
re-encryption schemes with applications to secure distributed storage,”
ACM Transactions on Information and System Security (TISSEC), vol. 9,
no. 1, pp. 1-30, 2006.

M. Finck and F. Pallas, “They who must not be identi-
fied—distinguishing personal from non-personal data under the GDPR,”
International Data Privacy Law, vol. 10, pp. 11-36, 03 2020.

M. Koscina, D. Manset, C. Negri, and O. Perez, “Enabling trust in
healthcare data exchange with a federated blockchain-based architec-
ture,” in IEEE/WIC/ACM International Conference on Web Intelligence-
Companion Volume, pp. 231-237, 2019.

M. M. Madine, A. A. Battah, I. Yaqoob, K. Salah, R. Jayaraman, Y. Al-
Hammadi, S. Pesic, and S. Ellahham, “Blockchain for giving patients
control over their medical records,” IEEE Access, vol. 8, pp. 193102—
193115, 2020.

I. A. Omar, R. Jayaraman, K. Salah, M. C. E. Simsekler, 1. Yaqoob, and
S. Ellahham, “Ensuring protocol compliance and data transparency in
clinical trials using blockchain smart contracts,” BMC Medical Research
Methodology, vol. 20, no. 1, pp. 1-17, 2020.

T. M. Ferndndez-Caramés, 1. Froiz-Miguez, O. Blanco-Novoa, and
P. Fraga-Lamas, “Enabling the internet of mobile crowdsourcing health
things: A mobile fog computing, blockchain and iot based continuous
glucose monitoring system for diabetes mellitus research and care,”
Sensors, vol. 19, no. 15, p. 3319, 2019.

M. Abouali, K. Sharma, O. Ajayi, and T. Saadawi, “Blockchain
framework for secured on-demand patient health records sharing,” in
2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile
Communication Conference (UEMCON), pp. 0035-0040, 2021.
European Union Agency for Cybersecurity, “Data Pseudonymisation:
Advanced Techniques & Use Cases,” tech. rep., European Union Agency
for Cybersecurity, 2021.

J. Herranz, D. Hofheinz, and E. Kiltz, “Kem/dem: Necessary and
sufficient conditions for secure hybrid encryption,” IACR Cryptology
ePrint Archive, 2006.

J. Indumathi, A. Shankar, M. R. Ghalib, J. Gitanjali, Q. Hua, Z. Wen, and
X. Qi, “Block chain based internet of medical things for uninterrupted,
ubiquitous, user-friendly, unflappable, unblemished, unlimited health
care services (bc iomt u 6 hcs),” IEEE Access, vol. 8, pp. 216856—
216872, 2020.

G. Bigini, V. Freschi, and E. Lattanzi, “Decentralising the internet
of medical things with distributed ledger technologies and off-chain
storages: A proof of concept,” in EAl GOODTECHS 2021, vol. 401,
Springer Nature, 2021.

D. Nunez, “Umbral: A threshold proxy re-encryption scheme,” 2018.
M. Zichichi and G. Bigini, “miker83z/web5-health-data-sharing-tests:
decentralized health data sharing tests,” June 2022.

