This is the final peer-reviewed accepted manuscript of:
DLT-based Data Mules for Smart Territories

Conference Proceedings: 31st International Conference on Computer
Communications and Networks (ICCCN 2022), July 25-28, 2022, Honolulu,
Hawaii

Author: Mirko Zichichi; Luca Serena; Stefano Ferretti; Gabriele D'Angelo
Publisher: IEEE

The final published version is available online at:
https://dx.doi.org/10.1109/ICCCN54977.2022.9868916

Rights / License:

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other wuses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. The terms and conditions
for the reuse of this version of the manuscript are specified in the publishing policy.
For all terms of use and more information see the publisher's website:

https://www.ieee.org/content/dam/ieee-orqg/ieee/web/org/pubs/
author version faq.pdf

This item was downloaded from the author personal website (https://mirkozichichi.me)

When citing, please refer to the published version.

https://dx.doi.org/10.1109/ICCCN54977.2022.9868916
https://mirkozichichi.me/
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/author_version_faq.pdf
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/author_version_faq.pdf

DLT-based Data Mules for Smart Territories

Mirko Zichichi*T, Luca Serenal, Stefano Ferrettit, Gabriele D’AngeloT
*Ontology Engineering Group, Universidad Politécnica de Madrid, Spain
TDepaItment of Computer Science and Engineering, University of Bologna, Italy
IDepartment of Pure and Applied Sciences, University of Urbino “Carlo Bo”, Italy
mirko.zichichi@upm.es, luca.serena2 @unibo.it, stefano.ferretti@uniurb.it, g.dangelo@unibo.it

Abstract—Many services that are taken for granted in smart
cities are not even remotely available in dislocated areas yet, due
to the lack of or too costly wide area network connectivity. With
the aim to offer a practical and secure way to transport data
and allow for communications in such constrained scenarios, we
focus on the problem of incentivizing to data mules, i.e. devices
dedicated to enable the data transfer even in the absence of the
Internet. Our solution combines the use of several distributed
technologies for verifying the correct behavior of all the partici-
pants and incentivize them. We focus on the use of state channels
to support the flow of smart-contract-based tokens as a form of
payment, in a condition where participants communicate only
with others in physical proximity. Furthermore, we validate the
viability of the application through the simulation of peer-to-peer
interactions between the participants. In this work we achieve
positive results in terms of communication latency and percentage
of client nodes which are able to benefit from the system.

Index Terms—Data Mules, Distributed Ledger Technologies,
State Channels, Smart Territories

I. INTRODUCTION

Nowadays, we are at a crossroad. People are to some extent
being constrained to move to big, smart cities, due to the
higher opportunities in terms of work and offered services.
Conversely, recent events, such as the COVID-19 pandemic,
have shown how this trend can be reversed, with an increasing
number of people deciding to move to the countryside and
rural areas. Almost, since for sure many services that are taken
for granted in (smart) cities, are not even remotely available in
dislocated areas yet. For some underprivileged territories it is
not possible to implement (costly) smart cities services due to
the very different economic circumstances or due to unavail-
able, unreliable or too expensive network infrastructures [/1]].
We argue that what is needed is a set of novel opportunistic
solutions, which allows us to share and reuse data, services,
computation and bandwidth. Such a solution would simplify
the development of new services and the integration of legacy
technologies into new ones. Well-known examples consist of
technologies such as multi-homing mobile services, mobile
ad-hoc networks, opportunistic networks, peer-to-peer and
fog computing systems [1]]. In this novel “smart territory”
case, however, such applications might not be supported by
a wide area network connectivity, and certain networking
solutions might result as too costly (e.g. satellite connections).

This work has received funding from the EU H2020 research and innovation
programme under the MSCA ITN European Joint Doctorate grant agreement
No 814177 LAST-JD - RIoE and from the University of Urbino through the
“Bit4Food” research project.

Data Mules (that is an acronym for Mobile Ubiquitous LAN
Extensions [2]]) allow for communication and data transfer
even in the absence of Internet, and they can be important tools
for the functioning of applications concerning the Internet-of-
Things (IoT) and, in general, for services based on the concept
of smart cities or villages, where there is a significant flow of
data coming from remote offline areas.

InDaMul [3] is a decentralized application that combines
the use of Distributed Ledger Technologies (DLTs) and Decen-
tralized File Storages (DFS), mostly for verifying the correct
behavior of all the participants and to incentivize them in
Data Mule-based communications. Smart contracts enable an
automated validation of claims, e.g. simply by verifying a
signature, but, scalability and costs issues are still a limit [4]].
Generally, layer-two protocols are exploited to overcome these
limits, enabling transactions between users through the ex-
change of authenticated messages via a medium which is
outside of, but tethered to, a layer-one DLT [5]. In InDaMul,
we are interested in a layer-two protocol that can also be
executed without the need of constantly being connected to the
Internet and where the communication conducted only among
nodes in the physical vicinity suffices. For this reason, we
resort to state channel protocols and to the creation of networks
based on these [6]]. State channels are used to support the flow
of smart-contract-based tokens as a form of payment between
Data Mules and offline Clients (e.g. being in a no broadband
connection area), in order to send data to an online Server.
Moreover, Clients and their physical Neighbors can build up
a state channel network supporting the creation of “Islands”
served by Data Mules. Our main contributions in this paper are
about introducing the application that enables incentives in the
data transport process of Data Mules using state channels and
the validation of the proposed approach through the simulation
of a smart territory. The remainder of this paper is organized as
follows. Section [[I] provides the background and related works.
In Section [[TI] the application is presented, while in Section[[V]
we discuss the use of state channels networks. In Section
we present the experimental evaluation and, finally, Section
provides the conclusions.

II. BACKGROUND AND RELATED WORK

A. Data Mules

Data Mules are some types of devices that are able to collect
data from sensors and to exploit their own mobility to carry
the information to destination (or to intermediaries) using a

wireless short-range communication medium [7]. Depending
on the context, Mules can either be transportation vehicles
like buses or cars or even walking persons. As a result of their
movement between remote areas, they effectively create a data
communication link [8]. In the last few years, many research
works have been presented on Data Mules. For instance, in [2]]
a study was made with a number of Data Mules performing
independent random walks that collect data from static sensors
and deliver it to base stations, without forwarding the data
to other Data Mules. The characteristics of the random walk
mobility model are used to analyze the predicted performance
of the model. Other works refer to real vehicular networks use
cases, with a focus on routing algorithms for the exchange of
messages between Mules and other nodes [§]], [9].

B. Distributed Ledger Technologies

DLTs consist of a network of nodes that maintain a dis-
tributed ledger following the same protocol and, in the case
of the blockchain, the ledger is organized into chronologically
ordered blocks where each block is sequentially linked to the
previous one. Thus, DLTs are cryptographically guaranteed
to be tamper-proof and unforgeable, enabling the creation
of a “trusted” mechanism that can be exploited by multiple
users in a distributed environment with no need for third-party
intermediaries [[10]. Smart Contracts are instructions stored in
the blockchain and automatically triggered once a required
condition is met. We will refer to Ethereum [10] due to its
public open source blockchain that is in widespread use and
for its provision of robust Smart Contract development tools.
Smart contracts make it possible to build structures that act as
second layer cryptocurrencies, i.e. tokens, and in particular
ERC-20 tokens [11]]. Furthermore, these enable the develop-
ment of rewards and incentives based crowdsourced services.
In essence, participation in collaboration-based services can be
traced and rewarded thanks to Smart Contracts. In particular,
a Smart Contract can be devoted to the distribution of digital
tokens to those parties that share its resources or cooperate in
a communication protocol [12], [13].

C. State channels for services payments

State channels have been introduced to provide rapid DLT
payments without the need to store all transactions on-chain,
i.e. directly on the ledger, but mostly off-chain, i.e. outside
of the ledger [6]. State channels are regulated through smart
contracts that manage the validation of the channel’s payments.
A prominent implementation in the Ethereum blockchain is
pRaiden [6], an open source framework that is used to
implement token-based free pay-per-use payment channels.
The state channels protocol can be summarized in a few steps:

¢ Opening Channel - A user U opens a new state channel
in a Smart Contract (i.e. 1% transaction), by depositing
an amount of the ERC-20 token and indicating the other
channel party V.

« Updating Balance - Both U and V, now, can commu-
nicate off-chain by exchanging digitally signed balance
messages. Both parties authenticate themselves by using

the public-private key pair used to derive their addresses
on the smart contract. The exchanged messages are used
to update a balance value between U and V, e.g. if U
has to pay V' then the balance increases, otherwise the
balance decreases.

e Closing Channel - Both U and V' can close the state
channel at any time by invoking the corresponding
method in the Smart Contract (i.e. 2"¢ transaction). To
be executed, the corresponding method needs the copy of
the last balance message exchanged and the signature of
both parties. Finally, the balance value is deducted from
U’s deposit in favor of V, while the remaining part is
sent to U. A dispute mechanism can be implemented to
freeze the transfers.

The balance message contains a set of information used by
the two users for updating the balance in the state channel. It
contains: (i) the address of the other party the state channel
has been opened with; (ii) the on-chain state channel unique
identifier, e.g. the block number the channel was opened;
(iii) the updated balance. When U has a channel opened with
V and V has one with W, then it is possible for U to pay
W through V. These consist, indeed, in the establishment of
state channel networks, where among many state channels
the participants pay by using other participants as relays,
essentially forming a connected network. It is specifically a
Layer-2 network application running on top of the Layer-1
services of a cryptocurrency [|6]. This is the main idea behind
the Lightning Network and the Raiden Network [6].

D. LUNES

LUNES (Large Unstructured Network Simulator) is an open
source discrete event simulator, specifically designed for the
modelling and performance evaluation of complex networks
and communication protocols. LUNES is implemented on
top of ARTIS/GAIA simulation middleware, which offers the
primitives for time management and communication among
simulated entities, enabling also a parallel and distributed
execution [14].In previous works, some versions of this tool
have been employed to model blockchain behaviour, edge
computing scenarios or temporal networks and in this work a
version of LUNES has been developed for InDaMul [15]]. This
version of the software combines a part where the mobility
of the data mules is handled, a part intended to manage
the exchange of messages and, finally, a part responsible for
collecting and assembling data during the execution.

III. INDAMUL APPLICATION

We provided a summarized description of the protocol
behind the InDaMul application in a previous work [3[. In
here, we provide a more detailed description of the protocol
and an insight into the application through smart contracts.
This will help the reader to a better understanding of the
contribution of this work, which is a scalable implementation
of the incentivized data mule application through the use of
state channels. In the following, we use Figure [l as reference.

Offline

[Data

Encrypted message Access key Message

Fig. 1. Graphical representation of the InDaMul application.

TruDaMul Smart Contract

+ token:ERC20

+ C:addr = contractOwner

+ o:uint

+ tendersSet:map(bytes, Tender)
0.* + acl:map(bytes, addr[])

State Channels Smart Contract

+ submitTender

(Tender tenderC, bytes
tenderCSign, addr M1, bytes
MZIaddrSign, addr authorized)
+ createChannel *| + submitPayment

(addr receiver, addr deposit) 0.* (bytes idTenderC, bytes

+ closeChannel idTenderCSign, addr M2)
(addr receiver, uint blockN, + checkMulePayment

uint balance, bytes senderSign, (addr M, bytes idTender)

+ checkPermissions

bytes receiverSign, bytes
idTender, addr truDaMulContract) (addr user, bytes idTender)

+ token:ERC20
+ channels:map(bytes, Channel)

o

Fig. 2. UML class diagram representing the smart contracts used in InDaMul.

The InDaMul application is intended to work for any Client
(C) that finds itself in an offline condition, to enable it to send
a message to any Server (S) that is online. The application
includes a set of technologies and a protocol where a Data
Mule (M) takes care of retrieving (offline) the payload of
C and to bring it to a Proxy (P), which in turn forwards
(online) the message to S. A message can be returned from
S to C using the same protocol but in the opposite way.
The application includes: (i) a Smart Contract enabled DLT,
that enables payments and information verification through
Smart Contracts (we refer to the Ethereum specification [[10]]);
(i) an announcement service, to enable the exchange of
announcements between online nodes, e.g. a publish/subscribe
room; (iii) a DFS, for storing data using immutable identifiers
and to enable asynchronous communication between Mules
and Proxies; (iv) a decentralized authorization service, that
enables access to encrypted data through a network of nodes
that only operate following Smart Contract dictated policies;
we refer to the implementation shown in [[16] . The protocol
allows C and S to communicate and it can be divided in two
separate directions, almost mirrored in their behavior: (i) the
sending of a message from C' to S, and (ii) the answer replied
by S to C. During the execution of the protocol, in particular
when Mules and Proxy are online, a set of Smart Contracts
is used, i.e. the ones shown in Figure 2] A unique ERC20
Token [11] smart contract is used to enable any payment
exchange among all the involved actors.

A. Client and Data Mule Communication

A State Channel Smart Contract has been deployed before-
hand in order to manage all the state channels, as described
in Section [[I} Using part of the token amount held, C' opens
a set of state channels with each one (or part) of the Mules
that operate in its geographical zone. Whenever C is willing
to send a message to a Server S, it waits for a Mule and,
meanwhile, it broadcasts a request for taking charge of the
message. This message consists of a plaintext that has been
encrypted using S’s public key. Subsequently, a payload pc
is obtained by encrypting the message with a symmetric key
x, identified through an id, i.e. id, (this key will be used by
P to obtain the message to send to .5).

When a Mule, M1, passes nearby C, it receives a request
containing the payload dimension (in byte) and the tokens
offered for the job. If M1 accepts, then C' transmits to M1 the
payload pc, a balanceps; and a tenderc, signed by C using
its private key. The balance is a state channel object used for
the balance update containing the identifier of the channel, the
actual balance and the addresses of the smart contract and of
the involved parties. The tender in an object containing:

e EID - an exchange alphanumeric identifier that acts also
as a nonce;

e URI, - an immutable URI, e.g. a hash pointer, that
identifies a payload;

e offer - a numerical value representing C’s offer to P;

e id, - the id of the key used for obtaining pc;

Next, then, M1 will take care of delivering payload pc to
a Proxy P, which in turn will contact S (this process is
explained in detail in the next sub section). Whenever S has
to send a response message to C', P would take care of S’s
message by encapsulating it in a new payload pg. Then, this
payload will reach a new Mule, i.e. M2, that can reach the
vicinity of C'. The former transmits to the latter: (i) a price
request (in tokens) for transmitting pg, and (ii) a proof that
it is carrying a message to deliver signed by P. This proof
is contained in tenderp created previously by P. Once C
reaches an agreement on the price’s request, it sends to M2
a balancepso object for updating the balance in their state
channel. M2, then, transmits pg and C' can decrypt it in
order to check its validity. If valid, C' replies to M2 with a
valid response that the latter can submit to the InDaMul smart
contract signature extraction operation in order to unlock the
payments (for M2 and for P).

B. Data Mules and Proxies Communication

A InDaMul Smart Contract executes the majority of the
protocol tasks and thus requires that C' deposits an amount of
tokens to pay Mules and Proxies directly. When Mules become
online they can forward the Clients’ payloads to Proxies, or
vice-versa, Proxies can reach Clients through available Data
Mules. Whenever a Mule M1 is in charge of delivering C’s
payload pc to a Proxy, it can directly publish an announce
in an announcement service in order to reach an audience
of different Proxies. While announcing the tender, M1 also

uploads pc to a DFS. A Proxy P, that decides to take charge of
pc, simply invokes a method in the InDaMul Smart Contract
owned by C. The submitlender method (see Algorithm [1)
automatically checks the validity of the signatures found in
the data provided by M1 in the announcement and then binds
P’s address with id,. This makes P eligible to get access to
the key identified by id,. Thus, P sends a signed request to
the decentralized authorization service for accessing the key z,
i.e. a subset of blockchain nodes maintaining shares of the key
x using the Secret Sharing technique [16]. Each authorization
node autonomously checks the InDaMul Smart Contract to
verify that P is eligible for accessing the secret z, and then
releases a share of = to this actor. Then, P aggregates the
shares to obtain x and decrypts the payload pc, previously
obtained from the DFS. The obtained message is sent to S.

Whenever P has to relay a response from .S to C, it can
publish an announcement directly in the announcement service
in order to reach an audience of several Data Mules. P creates
the new payload ps containing S’s response message or a
proof that S did not reply, encrypted using C’s public key
and uploads it to the DFS. This announcement also requires
the information about the location of C', extracted from pc,
in order to allow a possible candidate Mule to know where to
deliver ps. A Mule, M2, that wants to take charge of tenderp,
downloads the payload pg from the DFS and then sends a
signed request to the decentralized authorization service for
accessing the key for decrypting C”’s location information. This
key is released only to Mules that opened a state channel with
C'. Then, M2 will be able to reach C' and start communicating
for delivering the payload.

C. On-chain and Off-chain Payments

During the protocol execution, several on-chain and off-
chain payments are performed using a mixture of state channel
payments, locks and automatic payments.

When C' assigns M to carry a new message, the former
also issues the latter with a balancejps; object that updates
the balance in their state channel. However, this balance
would be valid for closing the state channel, i.e. getting paid,
only after M1 announces pc and P invokes the InDaMule
Smart Contract’s submitTender method. Otherwise, M1 can
only close the channel using a previous valid balance object.
For what concerns P, the submitTender method automatically
locks an amount of tokens indicated by C' in favor of P, once
it has checked the validity of the data submitted, i.e. digital
signatures. This amount is locked until a response reaches
C through M2. M2 finally, gets paid using a balanceprs
object and response for the challenge-response authentication
that, when uploaded to the InDaMule Smart Contract through
submitPayment , will unlock both M2’s and P’s payments.

IV. THE ISLAND: A LOCAL STATE CHANNEL NETWORK

In the case in which a Client C' does not find itself within
the action range of Mules, a network can be set up between
C’s Neighbors, i.e. N. The nodes in this “Island” are in C’s
physical proximity and most of them are isolated (in terms of

Algorithm 1: submitTender of InDaMul

Global Data:

- thisqadr address of the InDaMul smart contract

- Cadqar address of client C' (the contract owner)

- token ERC20 Token

- tendersSet set of tenders used in the past

- oAmount amount of tokens reserved for proxies in tenders

- acl access control list for keys

Input:

- tenderc object containing an id, the sender tokens offer

for proxies and id,

- Stender the signature of tenderc

- M1444- the mule address

- SM1,4y, the signature of M14q4r

- Paadr the address authorized to access id.,

Result:

stores tenderc and Paqqr, and unlocks payment for M1
1 function:

// validate signature to identify C
2 extractedAddrl <— verify(tenderc, Stendere)
3 extractedAddr2 < verify(M1aadar, SMm1,44,.)
4 if extractedAddrl == extractedAddrl == C,44, then
// identity confirmed
5 allowMulePayment(M 1,44,, tenderc.id)
6 if token.balanceOf(thisqqdr) — 0 > tenderc.offer
then
// if enough balance then
7 tendersSet.add(tenderc)
8 oAmount = oAmount + tenderc.offer
9 acl.map(tenderc.idy, Paoddr)
10 end
11 end
12 return

communication) from the rest of the territory. However, one or
more Target Neighbors, i.e. TN, must be reached by a Mule
and then act as relays. Moreover, Clients that cannot interact
directly with a T'N have to find a path within the Island to
reach it and thus have to rely on several forwarding Neighbors.
In order to incentivize Neighbors to relay messages, a
State Channel Network is used. Each IV starts the operations
after a setup phase, where it announces through a short
communication medium (e.g. Wi-Fi Direct) its presence to
the other Neighbors in its vicinity. If N is not isolated, then
it would receive in response (from a Neighbor) the Island
configuration parameters and the current network topology.
Otherwise, it will keep sending announcement messages until
another reachable Neighbor is found (e.g. a moving device).
It is worth noticing that, during the setup phase only, IV is
required to issue at least one transaction to the DLT in order to
open a channel with one of its Neighbors. This initialization is
required once and it can be executed in many different ways
(e.g. on-demand Data Mule or by means of a trusted device).
For space reasons, we will not describe this procedure in detail
and it is left as future work. During the operations, the Neigh-
bors in the Island will share the information regarding their
“online” or “offline” status and current opened state channels
capacities and fees for their relay. The messages within the
Island can then be exchanged using different dissemination
strategies (e.g. gossip-based dissemination protocols) [14].

P S

Fig. 3. Latency (order of magnitude) for each interaction in InDaMul. Each
latency is obtained by the sum of an average latency for the application
execution with a payload of dim. 1 MB. The latency number in blue represents
the latency of the mule mobility and it is discussed in Section [V]

A Neighbor that decides to send a message to a Server S
becomes a Client C' and seeks to reach a Data Mule M. We
refer to the Raiden protocol [[6]. In the following we model
a transfer from an initiator, i.e. C, to a Target Neighbor, i.e.
T'N, though (zero or) some mediators, i.e. Neighbors V;. This
transfer has the aim to finally reach M through T'N.

o C creates a lockedTransfer message and propagates it
to TN through multiple Neighbors. A lockedTransfer
message reserves the amount for the pending payment
in each channel between C/N;, N;/N; and N;/T'N,
depending on the indicated fees.

o Once the lockedTransfer reaches T'IN, then it requests a
secret from C' by sending a secretRequest message.

o C gets a secretRequest message and checks its validity.
Receiving this one means that C' can safely assume the
lockedTransfer message has arrived to T'N, and that the
latter is incentivized to be honest because it will be paid.

o If all checks out C sends a revealSecret message back
to T'N. The revealSecret message contains a secret that
allows each N along the path and finally TN to claim
the locked amount in the pending transfer.

o A cascade of revealSecret messages will begin from T'N
back to each N; along the path. This message tells them
that the payee (either T'N or another IN;) knows the secret
and wants to claim the lock off-chain. So then they may
unlock the lock and send an up-to-date balance proof to
the payee. This is done by sending the secret message
back to the partner who sent the revealSecret.

o The transfer is finished when C' is receives a revealSecret
message from the first /V; in the path.

V. EXPERIMENTAL EVALUATION

We conducted a set of experiments to evaluate the InDaMul
application performance in terms of latency and Smart Con-
tracts operations cost. Due to the complexity of the applica-
tion and the very different technologies / interactions among
involved entities, it was not convenient to implement a single,
unified testbed environment for evaluating the whole applica-
tion. This also because in different steps of the protocol, there
are different metrics and aspects that need to be considered.
We can notice, indeed, that the different steps involve latencies
that are of different orders of magnitude, as shown in Figure

@ Proxy

Radial mule

@ Local mule

Local mule
path

Courier

T
1l

-

e
/

Fig. 4. Representation of the simulated area. The grid is divided into 16
regions. Thus, other than the Client nodes scattered along the area, there are
16 Local Mules, 16 Radial Mules and the Proxy P at the center of the grid.

InDaMul is intended for applications where high latency is
an acceptable drawback. Indeed, the most onerous operation
in terms of latency is the Data Mule mobility from the
Client to the Proxy, which does not depend on the application
performance, but rather on real world limitations and decisions
taken by the Mules. However, it is still desirable to minimize
the time that it takes for a Client node to contact a Proxy. In
order to have a clearer idea about the average delay needed for
messages delivery, we designed and implemented a simulation.

A. Scenario

The idea is to have a population of Client nodes scattered in
a simulated virtual environment, and a certain number of buses
and couriers that, when moving in the virtual space, collect
messages from the Client nodes and then bring them to the
destination (i.e. the Proxy). In order to reproduce collaboration
among clients and add some kind of opportunistic networking,
typical of services to be built in smart territories, we also
enable the possibility of Clients to relay some messages
within the Islands created using State Channels Networks,
as discussed in Section [[V] We consider a scenario in which
C, with a fixed location, communicates (using Wi-Fi Direct)
with M that is traveling at a constant speed. The details for
a more in-depth analysis on the physical and communication
medium considerations of such a scenario can be found in [17]],
[18]. Here, we are interested in only those measurements
that help us to evaluate the whole communication process.
For instance we consider the maximum Wi-Fi link rate at 12
Mbps and M’s velocity at 36 km/h, as in [[17]. Our experi-
ments have been conducted using the LUNES [15] simulator,
which is particularly suitable for implementing communication
protocols populated by a large number of interacting entities.
Through this simulator, we analyze the possible delays (and
their specific composition) ranging from the creation of a
message (by a Client) up to its delivery (to a Proxy).

B. Simulation Setup

A squared discrete space composed of 1000 x 1000 cells
was employed as a testbed for the simulations, with such an
area representing a unique village populated by several Clients
and equipped with couriers and a transport service, as shown

in Figure] A cell in such a grid represents a 20m x 20m area
and potentially contains one or more Client nodes. Therefore,
the total surface is composed of 20km x 20km with a density
of 25 nodes per km®>. We assume that some of the couriers
and some of the buses in the transportation service also act as
Mules, covering both the center and the peripheral regions. We
thus divided the grid into N? squared regions. In our model
the interactions are based on proximity, thus the Clients can
deliver their messages only to the Mules (or directly to P)
within a certain communication range, which in our scenario
was set to 200m (according to what reported in [[17]], the packet
loss ratio at such a distance is only 0.08). We assume that
Mules are moving on average at 36 km/h and that at each
time-step they move to an adjacent cell. Each time-step, thus,
consists in a discrete unit of time that represents 2 seconds.
Furthermore, not always all the messages need to pass from a
Mule. In fact, Clients (or couriers) can deliver their messages
directly to P (or to the Radial Mule) if they are sufficiently
close to directly communicate with them. Finally, we assume
that Mules skip the announcement service and directly transfer
the data to a unique Proxy, P. From now on, we will use the
generic term “message” to indicate the data that C' sends to
M1, which needs to reach P, i.e. pc, tenderc and address
In our model there are five types of simulated entities:

o Client nodes - They represent the generic C' of the
application. At each time-step, there is a chance for
them to generate a new message to be delivered to P.
In our experiments there are 10000 Clients randomly
placed in the simulated area, with either homogeneous
or centralized distribution. In the former case, the nodes
are put in the grid completely randomly, in the latter
the probability for a cell to host nodes is inversely
proportional to the distance from the center. The aim of
the centralized distribution is to reproduce a village-like
scenario, where most of the people live near the center,
while the peripheral areas are usually less crowded.

« Neighbors nodes - They represent C’s Neighbors in its
Island. We consider the chance for the Client nodes to
relay their messages within their own Islands, i.e. small
sub-regions of the grid composed of 20 x 20 cells, where
we assume that all the Neighbors can communicate and
exchange information since they belong to a common
communication network. When a Mule is in the vicinity
of a Neighbor node, the latter signals to the other nodes
within the Island the possibility to relay messages.

o Local Mules - They move zigzagging along a certain
region of the grid, traversing the local area and picking up
the messages from sufficiently close Client nodes. Once
a lap is concluded, the Local Mule delivers the messages
to the Radial Mule (or directly to P if it is sufficiently
close), before starting its route again.

« Radial Mules - One for each region of the simulated area,
they collect the messages released by a specific Local
Mule and then bring them to P at the center of the grid.
Then, they come back to their original position, waiting

TABLE I
AVERAGE DELAY & STANDARD DEVIATION (I.E. STD) IN SECONDS.
POPULATION 1S HOM = HOMOGENEOUS OR CEN = CENTRALIZED.
ISLAND IS PRESENT = ISL, OR NOT = NOI.
COURIERS ARE PRESENT = CUR, OR NOT = NOC.

Avg Delay + Std (seconds) Coverage
ISL NOI ISL NOI
= | HOM | 2276 £ 1202 3106 £2324 | 983% 39.2%
8 CENT | 1500 + 71797 2340 &+ 2311 | 96.7% 44.7%
© | HOM | 2995 +£ 2557 3101 £ 2320 | 61.1% 39.2%
g CENT | 2137 £ 2415 233542298 | 71.3% 44.7%

again for the Local Mule to complete the lap. For each
Local Mule there is a corresponding Radial Mule.

e Couriers - They move according to the Random Way-
point mobility model, i.e. they are either still or in motion,
and when they activate they pick a random point, moving
towards it with the same speed of buses. Couriers collect
messages to carry them until a reachable mule is found.

« Proxy node - Situated at the center of the grid, it is the
final destination for all the messages. Just as the Client
nodes, P is a static entity.

5000
4000
3000

2000

Delay (seconds)

1000

8000
7000

6000

5000

4000

3000

Delay (seconds)

2000

1000

Fig. 5. Heat maps representing the average delay in a scenario with a
homogeneous population. The top map considers no presence of Islands and
couriers. The bottom one considers their presence.

C. Results

We performed several tests with the purpose of measur-
ing the delay for delivering the messages and the coverage
achieved (i.e. the percentage of Clients nodes which are able
to send messages to a Mule), by varying: (i) the number
of couriers, (ii) the presence or the absence of Islands, (iii)
the distribution of the population. In our experiments, we
employed 16 Local Mules, 16 Radial Mules and, if any, 16
couriers. We previously assessed that, as expected, the average
delay is inversely proportional to the number of Mules, so
we focus on other aspects. The tests lasted 30000 time-steps,

in order to allow the Local Mules to complete their route
multiple times. As mentioned earlier, the population can be
either distributed in a uniform, homogeneous way (i.e. Clients
are placed randomly along the grid) or following a biased
distribution probability that favors the center of the area, rather
than at the border. Table [shows the metrics retrieved by
these tests. As expected, one can notice that with a centralized
population the average delay is significantly reduced, because
most of the nodes are located near to the center, where it is
easier to directly get in touch with the Proxy or to meet one of
the Radial Mules on the way to the center. It is also possible to
observe how the presence of Islands and couriers has a positive
impact on the coverage achieved, significantly boosting the
percentage of nodes reachable by the Mules. The usage of
couriers may also entail a higher average delay, due to more
nodes at the edge of the grid using the application. Finally, it is
interesting to notice that usually with a centralized population
the achieved coverage is higher (the nodes at the center are
easier to contact). This is particularly evident by comparing the
two heat maps in Figure [5] where, with centralized population
(despite the presence of Islands) the areas at the edge of
the grid cannot get connectivity. However, this behaviour
is overturned by employing couriers as well, bringing the
coverage from 71.3% to 96.7% for centralized distribution and
from 61.1% to 98.3% for homogeneous distribution.

D. Smart Contracts Performances Discussion

Generally speaking, we can expect from 2 to 60 seconds of
latency in the interaction with the Ethereum public blockchain,
however average latencies decrease with the increase in gas
prices [4]. With this in the view, we measure our experiments
in terms of gas, following the Ethereum protocol [[10]. The
Smart Contracts implementation can be found in [19]]. The gas
usage of the approve (44733), openChannel (92285) and
closeChannel (81 315) methods are relatively low and do not
deviate much from the other similar application implementa-
tions in Ethereum. On the other hand, the submitT ender and
submit Payment methods in the InDaMul contract have a
higher gas usage, i.e. ~ 246k and ~ 170k respectively. This is
due to the fact that these operations involve more data and the
execution of signatures verification. At the time of writing, an
example of gas price for the Ethereum public blockchain for
invoking submitT ender in a transaction within ~ 30 seconds
is ~ b3 Gwel, i.e. ~ 43.62 dollars. Obviously, this price does
not represent a feasible option in most scenarios. However,
executing it in Ethereum sidechains, such as Polygon [10],
would cost, at the time of writing, around ~ 0.005 dollars,
making it a viable alternative for deploying the application.

is then charged with the message delivery. After describing
VI. CONCLUSIONS

We presented an application that enables the delivery of
messages in locations where the Internet coverage is problem-
atic. The main idea is to make use of technologies such as
DLTs and DFS to achieve the decentralization of the service.
Data Mules have a fundamental role, since they collect and
transport the information from the source to a Proxy, that

the application, we carried out an experimental evaluation for
retrieving a raw estimate of the delay required to exploit the
application. Specifically, we focused on the Mules mobility
since other delays, by comparison, are negligible. We consid-
ered a village-like scenario where buses and couriers act as
Data Mule. The simulations, performed with an agent-based
simulator called LUNES proved that the presence of islands
and couriers ensures connectivity to a significant number of
nodes. The application is therefore feasible for such use case,
even though gas cost in the Ethereum public blockchain might
represent a concerning issue for the execution.

REFERENCES

[1] S. Ferretti, G. D’Angelo, and V. Ghini, “Smart multihoming in smart
shires: Mobility and communication management for smart services in
countrysides,” in Proceedings of the IEEE Symposium on Computers
and Communications. 1EEE, 2016.

[2] R. C. Shah, S. Roy, S. Jain, and W. Brunette, “Data mules: Modeling
and analysis of a three-tier architecture for sparse sensor networks,” Ad
Hoc Networks, vol. 1, no. 2-3, pp. 215-233, 2003.

[3] M. Zichichi, L. Serena, S. Ferretti, and G. D’ Angelo, “Incentivized data

mules based on state-channels,” in 2022 IEEE International Conference

on Blockchain and Cryptocurrency (ICBC). IEEE, 2022.

L. Zhang, B. Lee, Y. Ye, and Y. Qiao, “Evaluation of ethereum end-to-

end transaction latency,” in 2021 11th IFIP International Conference on

New Technologies, Mobility and Security (NTMS). 1EEE, 2021.

[5] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais,

“Sok: Layer-two blockchain protocols,” in International Conference on

Financial Cryptography and Data Security. ~Springer, 2020.

E. Erdin, S. Mercan, and K. Akkaya, “An evaluation of cryptocur-

rency payment channel networks and their privacy implications,” arXiv

preprint arXiv:2102.02659, 2021.

[71 G. Anastasi, M. Conti, and M. Di Francesco, “Data collection in sensor
networks with data mules: An integrated simulation analysis,” in 2008
IEEE Symposium on Computers and Communications. 1EEE, 2008.

[8] M. M. Coutinho, A. Efrat, T. Johnson, A. Richa, and M. Liu, “Healthcare
supported by data mule networks in remote communities of the amazon
region,” International scholarly research notices, vol. 2014, 2014.

[9] M. Jests-Azabal, J. L. Herrera, S. Laso, and J. Galan-Jiménez, “Oppnets

and rural areas: An opportunistic solution for remote communications,”

Wireless Communications and Mobile Computing, vol. 2021, 2021.

Polygon, 2021. [Online]. Available: https://polygon.technology/papers/

F. Vogelsteller and V. Buterin, “Erc-20 token standard,” Ethereum

Foundation (Stiftung Ethereum), Zug, Switzerland, 2015.

P. Ferraro, C. King, and R. Shorten, “Distributed ledger technology for

smart cities, the sharing economy, and social compliance,” IEEE Access,

vol. 6, pp. 62728-62746, 2018.

M. Zichichi, L. Serena, S. Ferretti, and G. D’ Angelo, “Complex queries

over decentralised systems for geodata retrieval,” IET Networks, pp. 1—

16, 2022, doi: [10.1049/ntw2.12037.

L. Serena, M. Zichichi, G. D’Angelo, and S. Ferretti, “Simulation

of dissemination strategies on temporal networks,” in 2021 Annual

Modeling and Simulation Conference (ANNSIM). 1EEE, 2021.

“Dataset and scripts github repository,” April 2022. [Online]. Available:

https://github.com/luca-Serena/lunes-tdm-islands

M. Zichichi, S. Ferretti, G. D’Angelo, and V. Rodriguez-Doncel, ‘“Per-

sonal data access control through distributed authorization,” in 2020

IEEE 19th International Symposium on Network Computing and Appli-

cations (NCA). 1EEE, 2020, pp. 1-4.

A. Balasundram, T. Samarasinghe, and D. Dias, “Performance analysis

of wi-fi direct for vehicular ad-hoc networks,” in 2016 IEEE Inter-

national Conference on Advanced Networks and Telecommunications

Systems (ANTS). 1EEE, 2016, pp. 1-6.

W. Xu, W. Shi, F. Lyu, H. Zhou, N. Cheng, and X. Shen, “Throughput

analysis of vehicular internet access via roadside wifi hotspot,” IEEE

Transactions on Vehicular Technology, vol. 68, no. 4, 2019.

“TruDaMul,” April 2022. [Online]. Available: https://github.com/

AnaNSi-research/TruDaMul

[4

=

[6

=

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

https://polygon.technology/papers/
10.1049/ntw2.12037
https://github.com/luca-Serena/lunes-tdm-islands
https://github.com/AnaNSi-research/TruDaMul
https://github.com/AnaNSi-research/TruDaMul

