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Blockchain-based Data Management
for Smart Transportation

Mirko Zichichi, Stefano Ferretti, and Gabriele D’Angelo

Abstract Smart services for Intelligent Transportation Systems (ITS) are currently
deployed over centralized system solutions. Conversely, the use of decentralized
systems to support these applications enables the distribution of data, only to those
entities that have the authorization to access them, while at the same time guaran-
teeing data sovereignty to the data creators. This approach not only allows sharing
information without the intervention of a “trusted” data silo, but promotes data veri-
fiability and accountability. We discuss a possible framework based on decentralized
systems, with a focus on four requirements, namely data integrity, confidentiality,
access control and persistence. We also describe a prototype implementation and
related performance results, showing the viability of the chosen approach.

1 Introduction

In the last decade, Intelligent Transportation Systems (ITS) have emerged as a way
to efficiently improve mobility, travel security and increase the options for travellers.
As defined in the European Union directive 2010/40/EU [12], ITS are advanced
applications for the provision of innovative transport and traffic management ser-
vices, with the ultimate purpose of aiding individuals within the infrastructure to
make safe and timely decisions. The general idea is usually that of devising a sort
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of data management middleware to build advanced applications for the provision
of innovative transport and traffic management services, with the aim of enabling
users “to be better informed and make safer, more coordinated and ‘smarter’ use
of transport networks” [12]. Vehicles and transportation infrastructures are becom-
ing increasingly “smarter”, which means that they are equipped with sensors that
track and process a huge amount of different types of information, e.g. data sensed
by the interior of the vehicle, the surrounding environment, road conditions, etc.
This enables the creation of applications “without embodying intelligence as such”,
which brings out the real essence of an infrastructure of this kind. The interaction
processes between two individuals, or an individual and a vehicle, or an individual
and the infrastructure, within the ITS, should include the least possible presence of
a human intermediary. All of this constitute a network of user-owned and infrastruc-
ture devices that is usually referred as VANET (Vehicular Ad-hoc NETwork) [31].
In this vision, the intelligence shifts from that of a human third-party to that of an
artificial intelligence that has been optimized for this use case. This artificial inter-
vention leads to the creation of “innovative services relating to different modes of
transport and traffic management” [12], that take advantage of faster processing and
better performances. When there are no human intermediaries, indeed, traditional
processes become faster to execute.

In addition, the growth of smartphones and Internet-of-Things devices enables
individuals’ ubiquitous connectivity and the ability to collect environmental and per-
sonal information or crowd-sensed data [42]. Thus, users become an active part of
the infrastructure itself. The entirety of such crowd-sensed information is essential
for building sophisticated smart services that aim at improving traffic management,
transportation efficiency and safety, raising awareness about the environment, and
thus improving the liveability and health status of the community of a given terri-
tory [11, 37, 18].

A variety of applications and protocols can be enforced altogether to obtain ad-
vanced and improved transportation systems. However, to fully exploit their potential
and promote the development of smart mobility applications and services for so-
cial good, several novel challenges must be faced, that require substantial changes
in transportation system models. The “desiderata” for such novel applications and
systems revolve around data management: more in particular, the mentioned data
gathering, communication, analysis and distribution among individuals’ vehicles,
infrastructures and services. Data sharing is placed on a middle ground between
devices that produce data and the systems that process data to create new smart
services. Data-driven innovation will bring enormous benefits for ITS users and not
only [19]. The generation and sharing of such an amount of data create the need for
trading mechanisms that are at the basis of the productivity and competitive markets
for smart service providers, but also fundamentals in health, environment, trans-
parent governance and convenient public services. In turn, this creates the need for
evaluating data, in terms of interoperability and quality. These two features, together
with data structure, authenticity and integrity are key elements for an effective data
exploitation [19].
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In the context of ITS, one of the main issues is the unreliability of the exchanged
information [11, 42, 54]. This problem is typically due to the physical errors of
the sensors, malfunctions, poor network and GPS coverage. Such noisy data lead to
inaccurate information. Another problem is due to the fact that some users might be
interested in deliberately transferring forged information. Examples are insurance
frauds, as well as free-riders that decide to share false data, randomly generated
without using their sensors, in order to gain some revenues/credits for such fake data
sharing. Thus, one of the main goals to pursue is the identification of strategies for
the generation and distribution of secure and trustable crowd-sensed information.

Fig. 1 Intelligent Transportation System data management schema.

The need for trustful data trading and sharing leads to the rationale that anyone
should be allowed to verify the authenticity and the immutability of shared infor-
mation (see Figure 1). From the point of view of the data sharer, on the other hand,
the features of verifiability and access control are needed to be combined: making
data completely public would make them more verifiable but would also lower their
value; but on the other hand, completely closing the access to the data would lower
its verifiability.

This is where a (relatively) new kind of technology can come to aid. Distributed
Ledger Technologies (DLTs) are thought to provide a trusted and decentralized ledger
of data. DLTs are a novel keyword that extends the famous “blockchain” buzzword,
to include those technological solutions that do not organize the data ledger as a
linked list of blocks. Currently, DLTs are widely utilized in scenarios where: i)
multiple parties concur in handling some shared data, ii) there is no complete trust
among these parties, and often iii) parties compete for the access/ownership of such
data [8, 14]. This is a typical scenario of smart transportation services that exploit
data sensed from multiple sources, i.e. vehicles and infrastructure.

DLTs provide the technological guarantees for trusted data management and
sharing, as they can offer a fully auditable decentralized access control policy man-
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agement and evaluation [33]. Indeed, these decentralized architectures are an ideal
choice for data management and sharing [50] because of their features: (i) Trans-
parency: auditability of access permissions by authorized third-parties; (ii) Security:
shifting trust towards the consensus mechanism allows mitigating the vulnerabilities
of (semi-)trusted intermediaries; (iii) Immutability: on-chain data will always be
verifiable; (iv) Peer-to-peer interactions: potential of user-to-user agreements.

On the other hand, Decentralized File Storages (DFS), in combination with DLTs,
increase the possibilities in data management and sharing as they provide a range
of different but suitable features [55]. They are a potential solution for storing files
while maintaining the benefits of decentralization, offering higher data availability
and resilience thanks to data replication. Their combined use with DLTs allows
overcoming the typical scalability and privacy issues of the latter, while maintaining
the benefits of decentralization [38]. In practice, DFS are leveraged for storing the
actual data outside the DLT, i.e. by means of “off-chain” storage, and tracing all the
data references in the DLT, i.e. “on-chain”.

Finally, smart contracts, built upon some DLT implementations, allow checking
the terms of an agreement without requiring the presence of a trusted human third-
party validator. These may enable auditability of access permissions by authorized
third-parties and mitigate privacy vulnerabilities of (semi-)trusted intermediaries
when accompanied by off-chain security mechanisms [53].

To sum up, various technologies enable the deployment of viable and scalable
systems for the support of smart services in the ITS domain. This work aims to
survey the possible ways to handle data management and governance, showing
their strengths and limitations, in order to provide a framework. Furthermore, we
investigate the feasibility of this framework by offering an implementation based on
current DLT and DFS solutions and discussing its performance in comparison to
ITS needs.

2 Data Management Strategies

2.1 The classic centralized approach for crowd-sourced data
aggregation

The most straightforward approach for managing data and services in ITS resorts to
a cloud computing infrastructure (Figure 2) [44]. Vehicles and smartphones collect
data and transmit them to the cloud, in platforms where it is possible to extract
information and utilize it for models, visualizations, and/or decision-making [32].
In this scenario, cloud computing enables ubiquitous, cost-effective, on-demand
network access to a shared pool of configurable computing resources that can be
rapidly provisioned and deployed with minimal management effort. Large online
platforms, backed up by data centers and centralized computing facilities, provide the
advantage of efficient data aggregation, data mining, analysis optimization, storage,



Blockchain-based Data Management for Smart Transportation 5

Fig. 2 Crowd-sensed data aggregated in a storage maintained by a single central entity.

batch processing, and computation, i.e. the cloud can compute the gigantic amount
of data and complex computations in a very short time [44].

There is a trade-off, however, that leads to imbalances in market power as large
online platforms, where a small number of players may accumulate large amounts
of data, gather important insights and competitive advantages from the richness
and variety of the data they hold [19]. The current practice of data controllers, i.e.
entities that collect and manage data coming from users’ devices and infrastructure,
is to centralize resources in “silos". These controllers usually have a data-driven
business model that gives them no incentive to freely share data among each other
and to other entities, nor to provide users transparency of their data usage. About the
users’ location and activities, this information relates to the personal sphere of the
individual and composes a part of the dataset called personal data, i.e. any piece of
information that can identify or be identifiable to a natural person. Thus, when such
a kind of system model is used, it becomes difficult for users to maintain control over
their own personal data. That is, individual control, in particular with regard to one’s
person, has been described as a reflection of fundamental values such as autonomy,
privacy, and human dignity [30]. This can indeed represent a problem. It is not
by chance that regulations, such as the European Union’s General Data Protection
Regulation (GDPR) [13] and California Consumer Privacy Act (CCPA) [9], are
being implemented, to protect the right that “natural persons should have control of
their own personal data” (GDPR p. 2).

2.2 Pure P2P: keep data locally and distribute upon request

At the opposite corner, with respect to the centralized solution, there is a pure
peer-to-peer (P2P) approach.

It has been years since P2P technology attracted attention for making it possible to
share and exchange resources such as text files, music, videos, uncensored between
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one user and another, i.e. peer-to-peer. Initially, it seemed to be expected to become
the main component of the Internet, although interest in this technology had waned
due to the growth of cloud computing. However, a new wave of interest has recently
emerged with the advent of blockchain and cryptocurrencies.

In general, P2P applications usually run on top of an existing network, such as
the Internet. This overlay network can support different P2P architectures, usually
depending on the type of application that needs to be served. In a P2P environment,
a node is not connected to all the other peers in the network, but instead has a limited
number of connections to peers that are defined as ’neighbours’. Consequently, the
fact that each node is only connected to a certain number of other nodes makes it
necessary to relay multiple messages between peers in order to disseminate informa-
tion to the whole network. Furthermore, there is an aspect to consider in the structure
of a P2P network, namely the dynamism of peers that can (freely) join and leave the
network. This often requires the use of some protocol to keep the network healthy
and connected.

To summarise, there are two important aspects related to the functioning of a P2P
system: (i) how messages are exchanged and relayed between peers; (ii) how the
overlay is constructed and maintained to cope with churns (i.e. nodes dynamically
coming and going in the system) [45, 21].

Fig. 3 Pure P2P data aggregation.

In the case of a Vehicular network, the idea here is very basic. As in classic
P2P systems, each user’s vehicle, or IoT device, or smartphone, maintains locally
its generated data (Figure 3). Upon request, it is free to decide if sharing such data
with someone else or not. At a first sight, such a solution might seem quite simple
to implement. Moreover, it solves a lot of issues concerned with data sovereignty. In
fact, each node maintains its data and makes decisions about sharing them.

But clearly enough, this is not a practical solution. In fact, in order to provide shar-
ing capabilities, each user’s device should be always connected, i.e. there should be a
mechanism cope with churns in the vehicular network. Users’ devices should provide
some guarantees related to storage, computation and communication capabilities, in
order to maintain, handle and transmit their data.

These issues can be solved by switching to an edge-computing like solution.
Basically, each user’s device has a sort of delegated agent representing it, which is
located on the Internet. The device stores its data at this edge node, which is thus in
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charge of handling such data. Therefore, storage, computation and communication
requirements are shifted to an Internet node, which might more easily provide higher
availability guarantees, rather than a user’s device. Yet, the availability and reliability
of a device’s data is as available and reliable as its delegate. Moreover, while this
solution is certainly viable, from a distributed system point of view, it still requires
some additional protocols to manage the data sharing in ITS. Finally, it does not
offer guarantees concerned with traceability, verifiability and immutability of data.

2.3 A Distributed Ledger Technology to register data

Fig. 4 DLT for data registration.

As we pointed out in the last example, user’s vehicles, IoT devices and smart-
phones equipped with sensors can transfer data to the network, by interacting with a
gateway. In the last example, this role was played by a delegated agent. However, we
argue that such sensed data can be stored and managed in a DLT network. Thus, each
device interacts with a DLT node, transmitting sensed data on a periodical basis. In
order to provide a level of traceability, verifiability and immutability of the generated
data, the data itself, or a related digest (when data consist of a large file or sensitive
information) is added to a DLT [54]. According to this approach, for instance, a
vehicle’s on-board computing unit is able to issue messages to a DLT node, thanks
to authentication. These messages are then converted to transactions added to the
ledger. In general, all public DLTs provide such functionalities by exposing APIs
that allow entities, external to the DLT, to send novel transactions. The main point
here is that these transactions must be registered in the DLT in a fast way. Second, a
good level of scalability must be guaranteed. Third, since a high amount of data is
produced, the DLT should offer low fees (or no costs at all). Finally, we need to treat
all these transactions as a data-stream, easy to retrieve. These main requirements
make not all the existing DLTs eligible in this context.
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DLTs can be distinguished for their level of scalability and responsiveness. For
instance, Ethereum [8] provides a distributed virtual machine able to process any
kind of computation through smart contracts. However, it is well known such a
blockchain technology has some scalability issues [5]. Conversely, DLTs such as the
IOTA DLT [41] provide features thought to guarantee scalability, but they lack the
support for smart contracts. By design, IOTA is recognized as a responsive, scalable,
feeless DLT, with tools for supporting data streams [54]. Among other solutions,
it is worth mentioning the implementation of sharding techniques in DLTs. In a
few words, sharding consists in breaking the ledger into smaller, more manageable
chunks, and distributing those chunks across multiple nodes, in order to spread the
load and maintain a high throughput. Currently, however, these technologies are still
in their infancy, e.g. Radix [43], or being developed, e.g. Ethereum 2.0 [23].

2.4 A Decentralized File System for crowd-sensed data

In order to overcome the typical DLTs’ scalability and cloud services’ privacy issues,
Decentralized File Storages (DFS) are a potential solution for storing files while
maintaining the benefits of decentralization. They offer higher data availability and
resilience thanks to data replication. DFSs are crucial for DLTs, as they can be
leveraged to store data outside the DLT, i.e. off-chain, when the consensus mechanism
discourages on-chain storage. To guarantee data integrity and verifiability, encrypted
sensed data could be stored directly on the DLT, i.e. on-chain. However, preventing
the on-chain storage is a preferable solution, not only for retaining high data reads
availability and better performances for data writes [55], but also because on-chain
personal data are generally incompatible with data protection requirements [22].

A principal example of DFS is the InterPlanetary File System (IPFS) [3], a
protocol that builds a distributed file system over a P2P network. IPFS creates a
resilient file storage and sharing system, with no single point of failure and without
requiring mutual trust between nodes. IPFS [3] is a DFS and a protocol thought
for distributed environments with a focus on data resilience. The IPFS P2P network
stores and shares files and directories in the form of IPFS objects that are identified
by a CID (Content IDentifier).

This technology is useful to store data that is not convenient to put on DLTs,
and where, in order to retrieve an object, only the file digest is needed, i.e. the
result of a hash function applied on the data. The CID is the result of the appli-
cation of a hash function to a file and it is used to retrieve the referenced IPFS
object in the network. Put in other words, the file digest is the identifier of the
IPFS object. Users that want to locate that object use this identifier as a handle.
When an IPFS object is shared in the network it will be identified by the CID
retrieved from the object hash, for instance a directory with CID equal to Qmb-
WqxBEKC3P8tqsKc98xmWNzrzDtRLMiMPL8wBuTGsMnR. If any other node in
the network tries to share the same exact directory, the CID will be always the same.
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IPFS can be used together with the InterPlanetary Linked Data (IPLD) [27]
to ensure that a logical object always map to the same physical digital object.
IPLD consists of a set of standards and technologies leveraged to create universally
addressable data structures, where the CID itself contains the hash and data decoding
information. IPLD enables to link resources identified by hashes that can refer to
diverse resources.

3 A Framework for Data Sharing and Management Based on
DLTs and DFS

Based on the possible approaches described in the previous section, in this section,
we provide a framework for the management and sharing of data in ITS. The main
pillar of this proposed framework is the concept of moving the processes for the
management of ITS data close to the individual that enacted their production, or
at least making them completely transparent to this one. This means, for instance,
that a user of a smart vehicle should have the last say on the processing of his own
sensed/personal data (e.g. the geo-location while driving) and that both the sensing
device manufacturer company and the user should (proportionately) benefit from the
value of that data. In our vision, technologies such as DLTs and DFS can help to
reach this objective.

DLTs, indeed, allow avoiding all the typical drawbacks of centralized server based
approaches (censorship, single point of failure, see Section 2.1), or those of pure
P2P applications (no data verifiability and traceability, see Section 2.2). The use of
DLTs to represent and transact with data would also grant data validation and access
control.

Crucial here is the use of smart contracts, since they provide a new paradigm
where unmodifiable instructions are executed in an unambiguous manner during a
transaction between two parts. Without the presence of a third-party, smart contract
instructions can make sure that the constraints on how and when data are accessed
are always respected. Every process is completely traced and permanently stored in
the smart contract enabled DLT.

All these properties are necessary in order to create digital data spaces managed
both by users and organizations. DFS can help in this sense, since they compensate
for certain deficiencies in DLTs. In fact, large sized data can be better handled off-
chain, as well as data that are not meant to be stored forever in a distributed ledger.
In these cases, DFS are more suitable for data storing; still, this approach can be
combined with the use of DLTs, as we well see in this section. Moreover, it is possible
to use DFS for maintaining continuous data availability. To sum up, the framework
we need must answer three main functional requirements: (i) ensure data integrity,
(ii) ensure data confidentiality, (iii) control who has access to data, (iv) ensure data
persistence. A solution for each one of them will be detailed in the next subsections
and will consist of depicting the same framework from different points of view.
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3.1 Data Integrity

Fig. 5 Data integrity diagram.

We already mentioned that crowd-sensed data, coming from users’ smartphones
and IoT devices, allow building sophisticated smart services (e.g. to improve traffic
management, transportation efficiency and safety) [54]. One requirement, however,
is crucial for the creation of secure services and for giving a real value to the sensed
data, that is data integrity. To be valuable, indeed, data sensed in an ITS must be
reliable in its entirety, and this property should be easily verifiable. DLTs ensure the
verification of data integrity in a simple and straightforward way, since the ledger is
immutable. Of course, this does not completely assure reliability, as data integrity
does not coincide with data security nor quality. Indeed, incorrect information about
an assertion can be introduced into the DLT, i.e. the GIGO problem [2]. However,
the ledger maintains a trace that makes it possible to investigate the insertion process
of data. Thus, DLTs can be leveraged to ensure data integrity. However, this does
not necessarily mean that data is stored on-chain. This consideration stems from two
observations:

• Storing data into a DFS usually requires lower latencies with respect to DLTs,
which typically require some time-consuming consensus mechanism, e.g. Proof-
of-Work.

• On-chain data cannot be deleted or modified, becoming an issue when user
intentions or regulations require the opposite. For instance, due to the GDPR
right to be forgotten or to the right for rectification [13], personal data must not
be stored directly in the DLT, even when encrypted [22].

With this in view, the framework considers DFS for data storage, while adopting the
mechanism of storing hash pointers in DLTs for content addressed data. In content
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addressing, data are identified by their content “fingerprint” instead of their location
(such as in the HTTP protocol). A cryptographic hash function is used to identify
the content and its result, i.e. a digest, which can be disseminated in a distributed
environment to easily refer to the same piece of data. The advantages of content
addressing in respect to location addressing are that: (i) links are permanent, i.e.
hash pointers; (ii) the link itself does not reveal any of the content, but the content
can be used to derive the link; (iii) it increases the integrity of data since altering the
content would produce a new link.

It is worth noticing that, storing data off-chain (i.e. in a DFS) and the hash pointers
on-chain offer the same levels of data integrity in respect to storing data completely
on-chain. Having access to the off-chain stored data, indeed, enables the possibility
to compute the hash function over the data and compare the result with the hash
pointer that has been immutably stored on-chain.

Moreover, this mechanism enables data deletion [38] and privacy [55], since data
in DFS are not immutable and not always public.

3.2 Data Confidentiality

In the previous sub-section, we referred to the process of storing data in DFS, but
there is one aspect that needs to be pointed out. Since DFS protocols can be executed
in public networks [3], data needs confidentiality before any sharing and/or storing.
Indeed, the value of a piece of data also depends on who can access it, e.g. a private
information becoming public may lose its value in certain use cases. For this reason,
personal data is pre-processed by an encryption algorithm before publishing it to the
DFS. We refer to the result of this operation as the “encrypted data”. The encryption
algorithm can assume any form, but it should be implemented in a way that it does
not break data integrity, i.e. it must be possible to verify that the hash pointer and
the (encrypted) data correspond. The encryption is a critical part for approaching
Privacy by Design [10] and crosses vertically all the other parts of a framework for
data sharing. For the sake of simplicity, here we refer to a symmetric encryption
algorithm that encrypts a piece of data with a new randomly created symmetric key
(but more on this can be found in [53]).

In a simple and generic approach, the personal data generated from a data source
(smartphone or IoT device) or held by a data controller is encrypted using a symmetric
content key (possibly using an efficient symmetric key cryptography algorithm). It
is important to differentiate between two instances of personal data that are needed
to protect: (i) types of data that can be defined “static”, e.g. personal information
regarding the name of a driver rarely changes. In this case, each datum can be
protected using a content key with no particular relations to other data and that can
be created in a pseudo-random way and then kept in safe. (ii) types of data that
more frequently update the property of a person, e.g. the location of a subject can be
updated each second in a stream of data. In this case, we mostly deal with time series
data that may be more useful when aggregated. Hence it might be more useful to
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have content keys related between each others. For instance employing a symmetric
key derivation that exploits relations.

Up to this point, the specified framework includes a device within the ITS, e.g.
vehicle, IoT device, smartphone, that:

1. fetches a piece of data from a sensor (found in the device or belonging to another
device with which it has a direct or indirect communication);

2. encrypts the data with a symmetric key;
3. stores the result, i.e. the encrypted data, on a DFS (making a request to a DFS

node);
4. stores the hash pointer of such encrypted data on a DLT (making a request to a

DLT node).

It is important to note that steps 1 to 4 can be directly instantiated in a user’s personal
device, allowing him/her to directly control its data. Alternatively, only the first step
can be instantiated in the personal device and the other three can be instantiated
in one (or more) devices managed by another entity (that is then considered as a
data controller). However, at this point, the framework still misses a mechanism for
accessing shared data.

3.3 Data Access Control

Fig. 6 Data access control diagram.

A second part of the framework, which is complementary to data confidentiality,
sees the data consumer as the main actor who is willing to have access to some
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shared data. Practically, this actor needs the symmetric key for the decryption of
some data and, thus, an authorization service should be placed between the key and
this actor. There are several methods to design this service, but here we distinguish
between:

• Centralized - the most feasible solution, that is where only one service provider
is involved in the authorization service and that holds the entire set of secret
keys to access data. The data consumer contacts the server directly to retrieve
the keys he is eligible to get. This design implies that users trust the server, since
this entity has complete access to user data. It also covers the case in which the
data provider or controller directly implements this service. The drawback of
this approach is that it does not cope with the possibility that the authorization
server is honest-but-curious, i.e. it follows the protocol correctly but, if curious,
can decrypt and thus access data.

• Decentralized - the vision to decentralize the service would help to shift the trust
from one entity to a protocol [29]. In this case, indeed, nodes in a decentralized
network may be considered semi- or un-trusted, but a consensus mechanism
together with a dedicated cryptographic mechanism, would enable the user to
be more confident in the protocol [20, 47, 6, 16].

In the framework that we present here, the authentication service leverages a
decentralized environment to provide authorizations to consumers for different rea-
sons: (i) to avoid, also in this case, a single point of failure; the failure here includes
both service interruption and privacy leakages; (ii) to release the data provider de-
vice from the burden of completely handling keys distribution; in fact, this service
may become very expensive in terms of communication in case of fine-grained ac-
cess; (iii) to exploit smart contract distributed computation for implementing a “fair”
and automatic access control mechanism; (iv) to exploit DLT’s transparency for the
auditability of access permissions.

The protocol for the decentralized authentication service used in the framework
includes two parts, an on-chain and an off-chain part [53]. On-chain smart contracts
are exploited for the management of an Access Control List and for the distributed
computation of the access mechanism. However, this is complemented with an off-
chain keys distribution mechanism. In particular:

• On-chain Access Control List (ACL) - The access to the encrypted data, stored
in a DFS, is managed through smart contracts, that regulate access rights to data.
In practice, each piece of data can be referenced in a specific smart contract and
bundles of data can be referenced through Merkle Trees [34]. The form of this
data is the one we have seen in the previous sections. In addition, with regard to
the data, the contract can also maintain data schemes and indications to the data
kind, in order to have interoperability when interacting with such data [24]. The
best way to explloit the data indeed is to provide these schemes in a machine-
readable format for specifying what to expect from the them. This is needed
by the a possible data consumer in order to better handle the data computation
and it can be defined directly by the entity who manages the source device or
by means of a specific standard. The smart contract, however, is mostly used to
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maintain an Access Control List (ACL) that represents the rights to access some
data. Consumers, listed in the ACL through their DLT address, can demonstrate
to an authorization service their eligibility to access some particular data. Once
a Consumer is eligible to obtain certain content, i.e. he is listed in the ACL, he
can access such content through a content key. Service providers can directly
verify this information from the ACL and release the key needed to decrypt
the encrypted data. Thus, through smart contracts, access to the data can be
purchased or can be allowed by the data owner. The release of keys for accessing
the encrypted data, then, is authorized only to entitled users.

• Off-chain Keys Distribution - When this service of keys distribution is operated
by a single central provider, trust must be given to this one, since the keys are
kept in one place only. Assuming that this provider is honest-but-curious, such
that it follows the protocol correctly (e.g. an online social network sharing
a user’s vehicle geolocation with a user’s friends, if curious, can access to
this information), decentralization of the service can be put in place in order
to shift the trust to the protocol itself, instead of the single provider. In the
decentralized case, nodes in a network can be considered semi- or un-trusted, but
a data protection/cryptographical mechanism, built into their execution protocol,
allows the whole system to be trusted [51, 56]. When a data consumer is entitled
to access some data on-chain (i.e. in a smart contract ACL), it can then request
the release of the associated distributed keys to the nodes of such a network.
Since it is not possible to store secret keys or decrypt messages on-chain, due
to its public execution, an off-chain keys distribution mechanism is needed.
However, distributed computation should be used to maintain decentralization
in the key distribution process, e.g. MultiParty Computation (MPC) [51, 35].
Two cryptographical schemes can be used in this case for the content keys
distribution:

– Secret Sharing (SS) - This scheme splits the content key in 𝑛 shares, but
only 𝑡 shares are enough to reconstruct the key. A (𝑡, 𝑛)-threshold scheme
is employed to share a secret between a set of 𝑛 participants, with the
possibility to reconstruct the secret using any subset of 𝑡 (with 𝑡 ≤ 𝑛) or
more shares, but no subset of less than 𝑡. In a network where multiple nodes
store secret shares, a consensus can be reached by 𝑡 nodes to provide the
shares to a data consumer, allowing him to know the secret. This can be
employed to provide privacy to a user that is sharing a secret, since none of
the nodes can obtain the whole secret without the help of other 𝑡 − 1 nodes.
Thus, single nodes alone are unable to reconstruct the content key because
they only save a portion of this key.

– Threshold Proxy Re-Encryption (PRE) - The content key can be re-
encrypted by the a proxy node using the proxy re-encryption (PRE) scheme.
PRE [1], is a type of encryption where a proxy entity transforms a ciphertext
encrypted with a content key 𝑘1, into a ciphertext decryptable with a key 𝑘2,
without learning anything about the underlying plaintext. This is possible
using a re-encryption key 𝑟𝑘1−2 generated by the data owner who has initially



Blockchain-based Data Management for Smart Transportation 15

encrypted the plaintext with 𝑘1. PRE is a scheme that usually involves only
one semi-trusted proxy node. However, it can be the case that this node
decides to re-encrypt data immediately, rather than to apply conditional
policies as instructed, or it may collude with the Consumer to attack the
data owner’s private key. A threshold proxy re-encryption scheme can be
used to solve this problem. Instead of using a single re-encryption key, a
(𝑡, 𝑛)-threshold scheme is used to produce “re-encryption shares”, in such
a way that these can be combined client-side by the data consumer.

Both these techniques can be supported in a decentralized data access control
and come with different advantages and disadvantages. SS relieves the user from
any interaction during each key distribution, but at the same time if 𝑡 nodes are
malicious then the user cannot intervene to stop the keys from getting leaked.
On the other side, PRE has the drawback of requiring the user to generate a
re-encryption key for each new consumer, however he has the option to stop
producing new re-keys if some nodes are malicious.

3.4 Data persistence

Fig. 7 Data persistence incentives diagram.

In P2P systems a general issue affects the availability of data when the network
nodes have no incentive to keep their storage occupied. For instance, it is well
known that in file-sharing systems, such as BitTorrent, the data availability of some
popular content may become poor quickly, and eventually it is hard to locate and
download it [25]. Similarly, when there is no incentive to maintain files, also DFS
cannot offer guarantees on the persistence of data. Indeed, data is usually stored



16 Zichichi et al.

in the DFS as long as some node has some disk space to maintain a replica. The
more the nodes that maintain a copy of a given file, the higher the reliability and the
higher the guarantees that the file can be properly retrieved. To cope with this issue,
incentivisation mechanisms can be employed to obtain that the distributed system
permanently stores files, i.e. users can reward nodes that maintain a copy of their
data.

In order to provide incentives to nodes for maintaining data, some DFS integrate
DLTs, bringing together clients’ requests with storage nodes’ offers. In practice,
participants are rewarded with cryptocurrencies for serving and hosting content on
their storage. This strategy does not alter the protocol on how nodes exchange data
in the DFS but, “simply”, network nodes are paid to store and not erase them. This
payment is generally based on a proof that these nodes publish in the integrated DLT,
e.g. Proof-of-Spacetime [4].

Some DFS [4, 49] also integrate smart contracts in order to reward hosts for
keeping files. These contracts are usually referred to as File Contracts, i.e. a particular
kind of smart contract employed to arrange an agreement between a storage provider
and their clients.

In Filecoin [4], for instance, file storage is treated as an algorithmic market thanks
to File Contracts. Some nodes provide the storage and the prices of the service are
not controlled by a single enterprise, but rather depend on a supply-demand market
model. In this model, the user pays miners to store and retrieve files:

• A storage agreement is an agreement between a user and a storage miner in
which the former pays in advance and the latter periodically demonstrates that it
is still storing the file until the expiry time. In addition, the user can auction the
storage to miners who meet certain requirements. The storage miner stores files
for users and extracts additional blockchain coins by performing storage tests.
The user is guaranteed storage by storing evidence on the blockchain.

• A retrieval deal is an agreement between user and retrieval miner in which the
latter retrieves files from storage for the former. This means that the retrieval
miner can be a different entity from a storage miner. Unlike storage deals,
retrieval deals are managed off-chain and their value may depend on the speed
of retrieval. Thus, payments are made off-chain, are incremental and are typically
based on reliability or speed of recovery.

In the Filecoin blockchain, storage miners require powerful hardware in addition
to storage, as they are also tasked with creating new blocks (every 30 seconds) and
running proofs. The blockchain acts as a ledger for proofs, agreements and coin
transfers, therefore storage proofs are public. An important concept in generating
proofs for Filecoin is the sector, i.e. the basic storage unit. The size and time in-
crements for commitments are standardised and are chosen as a trade-off between
security and usability, while the duration of a sector depends on the storage market.
A sector is fully occupied by commitments made through File Contracts and must
be sealed before proof. Unused space is considered committed by auto-deal, i.e. by
the miner to itself.



Blockchain-based Data Management for Smart Transportation 17

The sector and its content ID (CID) are sealed in a replica, i.e. encoded in a way
that can be used for proofs. Then the Proof of Replication (PoRep) is performed on
the replica. This proof is based on the fact that an honest storage miner has already
sealed the blocks and can respond quickly before a timeout. The sectors are sealed in
a time-consuming process (due to the fact that the sectors are 32Gb or 64Gb) using a
key that depends on the node hardware. If a user wants their files stored as multiple
copies on different miners, each copy will have a different seal and an attacker would
have to download each block of the file and reseal it.

Over time, randomly selected storage miners have random sectors questioned,
from which the data is read for verification and compressed into a Proof of SpaceTime
(PoSt). Both users (on demand) and miners (periodically) check that blocks are valid
and storage miners are “punished” if blocks are not available before an agreement
expires. Storage miners, therefore, are required to provide public (i.e., stored on-
chain) proof that a given data encoding has existed in physical storage continuously
for a period of time. This means that all miners are asked to perform a PoRep on
a random sector of their storage when mining blocks, i.e. a WinningPoSt, or every
day, i.e. WindowPoSt.

4 Implementation and Evaluation

In this section, we will discuss the feasibility of the implementation of the presented
framework. Our implementation features several technologies that fall into the realm
of DLTs and DFS. Moreover, we will provide an assessment of the performance of
such implementation considering a specific ITS use case and its general constraints.

4.1 Implementation

4.1.1 IPFS as DFS and Filecoin for incentivization

Within the framework, the DFS plays the role of common data space, where all
the system components store data. In our implementation, such a role is played by
IPFS [3]. Thus, when a piece of data is uploaded to the network, the data digest is
returned as a reference. This reference can be stored in the DLT and then employed
to retrieve the specific data. Thus, the piece of data is published as an IPFS object
and then (asynchronously) referenced through its hash into a DLT transaction. The
digest, as explained before, allows verifying the integrity of the IPFS object.

To upload files on IPFS, a node running the IPFS protocol is necessary. Due to
the fact that it is (still) not feasible to run an IPFS node on constrained devices (such
as smartphones or vehicles on board units), other solutions must be explored. In our
implementation, we resort to an IPFS service provider (i.e. Infura [26]) to let users
disseminate files in the IPFS network.
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Data persistence is implemented through incentivization, thanks to the use of
Filecoin smart contracts [4]. Filecoin is the typical incentive used on top of IPFS,
where participants are rewarded with Filecoin tokens for serving and hosting content
on their storage.

4.1.2 IOTA as DLT

For what regards the DLT implementation, we refer to IOTA. The IOTA ledger is
not structured as a blockchain, but instead as a Direct Acyclic Graph (DAG) called
the Tangle [41]. Such public data ledger claims to be particularly targeted towards
the IoT industry. The IOTA transactions validation approach, indeed, is thought to
address two major pain points that are associated with traditional blockchain-based
DLTs, i.e. latency and fees. IOTA has been designed to offer fast validation, and no
fees are required to add a transaction to the Tangle [7]. This makes IOTA a candidate
choice to support smart services built through crowd-sensed data.

An important feature offered by IOTA is the Masked Authenticated Messaging
(MAM). MAM is a second layer data communication protocol that adds functionality
to emit and access an encrypted data stream over the Tangle. Data streams assume
the form of channels, formed by a linked list of transactions in chronological order.
Once a channel is created, only the channel owner can publish encrypted messages.
Data consumers that possess the MAM channel encryption key are enabled to decode
the message. Messages are pushed on the channel in chronological order, and each
message has a link to the next message to be created. This allows access from one
message onward, while restricting access to prior messages in the channel [7].

The data access to new data may be revoked simply by using a new encryption
key. We consider that the hash pointer of each piece of data stored in IPFS is stored in
a MAM message, and the symmetric content key to be shared with data consumers
is the MAM encryption key of the message.

4.1.3 Decentralized Access Control based on Ethereum Smart Contracts and
Cryptographic Threshold Schemes

The access control is fully managed by several predetermined Authorization Servers.
These nodes perform on-chain tasks related to the smart contracts execution, but also
off-chain tasks such as the keys distribution. As to on-chain tasks, a set of Ethereum
smart contracts [8] are used to implement the access control. These smart contracts
refer to the information that is written into IOTA MAM Channels, i.e. hash pointers,
using the MAM Channels addresses called “roots”. The software that has been
used for managing the ACL is the OpenEthereum client [36], a popular Ethereum
blockchain client. In particular, it offers the implementation of a “SecretStore” where
nodes can distribute keys on the basis of smart contracts extracted information.
Regarding off-chain keys distribution, we refer to two cryptographic schemes:
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• OpenEthereum Secret Sharing (SS) - To implement this scheme, we resorted to
the Secret Store provided by the OpenEthereum client [36], in which the content
key 𝑘 is split in 𝑛 shares and 𝑡 < 𝑛 are enough to reconstruct it. Considering the
key to decrypt a data as a secret, the secret sharing among a network of nodes
enables to be in a situation where, potentially, up to 𝑡−1 nodes can be malicious.
Indeed a consensus is reached by from 𝑡 nodes upward when a data consumer
asks to receive a content key. Moreover, any node in the network created through
the OpenEthereum cannot access the data on its own, as it would need the help
of other 𝑡 − 1 nodes.

• Umbral Threshold Proxy Re-Encryption (TPRE) - In Umbral [16], the con-
tent key 𝑘 is initially encrypted in a public key encryption scheme using the
public key of the data provider. The result of such an operation is then used in a
(𝑡, 𝑛)-threshold Proxy Re-Encryption schema, i.e. it can be re-encrypted using 𝑡

“re-encryption shares”. This process will produce a re-encrypted key that can be
decrypted using the private key of the data consumer to obtain the initial content
key 𝑘 . Among many schemes, Umbral uses a single-use uni-directional proxy
re-encryption where the re-encryption function is one way.

4.2 Performance Evaluation

Our experimental scenario was based on a hypothetical real ITS application. In par-
ticular, we conducted a trace-driven experimental evaluation where traces were gen-
erated using a real dataset of mobility traces of buses in Rio de Janeiro (Brazil) [15].
Based on these traces, we simulated several users’ devices on board of buses that,
during their path, periodically generate sensed data. We considered one user for each
bus. These data may represent temperatures, air pollution values, etc. In this case, we
focused on two different types of data: (i) small-sized data, such as hash pointers or
geodata, i.e. latitude and longitude (100 bytes); (ii) large-sized data, such as photos
(1 MB). Here, we present a summary of results which are discussed in detail in
[52, 54, 55].

Table 1 Results on IOTA, with 60, 120, 240 users. [54, 52]
# users Heuristic Avg Latency Conf. Int. (95%) Errors

60 Fixed Random 72.68 sec [70.43, 74.94] sec 15.37%
Adaptive RTT 22.99 sec [22.69, 23.29] sec 0.81%

120 Fixed Random 87.75 sec [85.38, 90.12] sec 29.49%
Adaptive RTT 27.35 sec [27.11, 27.58] sec 1.1%

240 Fixed Random 177.62 sec [174.25, 181.0] sec 42.81%
Adaptive RTT 73.26 sec [72.68, 73.85] sec 7.55%
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4.2.1 IOTA MAM Channels

One user per bus was emulated by a single process issuing messages containing
a hash pointer to a MAM Channel, based on the data-trace (a MAM channel was
associated with each user). Based on the bus paths, each user was set to generate
approximately 45 messages/hour. This resulted in a message to be issued to the
DLT every 80 sec, which is a reasonable time interval to sense data in an urban
scenario. For each test configuration, we replicated the experiment 12 times for 1
hour. We considered different heuristics for the selection of a IOTA full node from a
(dynamic) pool of public nodes to pair to each user (∼ 60 active nodes). The rationale
behind this choice was based on the assumption that users’ smartphones or buses’
computing units may not have computation capabilities to behave as full nodes [17].
One of the heuristics, called Fixed Random, requires each user to be assigned to a
random IOTA full node from the pool for the whole duration of the test. Another
heuristic was the Adaptive RTT: each user keeps a trace of past interactions with
full nodes and creates a ranking based on the experienced Round Trip Time (RTT)
[28]; then for each message to be uploaded on IOTA a full node is chosen based on
ranking. For each MAM message, we recorded the outcome of the upload request,
i.e. successful or unsuccessful, as well as the latency between the transmission of the
message to a node and the confirmation of its insertion in the ledger. This interval
of time is characterized mainly by two operations that are needed for storing the
transaction in the IOTA ledger: (i) the tips selection consists of selecting from the
Tangle two random transactions that do not have a successor yet, i.e. tips; (ii) the
Proof-of-Work, that requires computation to obtain a piece of data difficult (costly
and time-consuming) to produce but easy to verify [41].

Table 1 shows a summary of the results obtained for different repetitions of a
specific test [54, 52]. Two main measures experienced during a series of tests are
reported: (i) the average latencies including both the tips selection and PoW phases,
and (ii) the percentage of errors, that is the number of messages that failed to be
added to the Tangle, due to full nodes’ errors. Results show that, on one side, the
measured latencies are relevant. Indeed, the random selection of a full node for
issuing a transaction does not lead to good results, since the amount of errors is quite
high, as well as the measured latencies. On the other hand, the good news is that if
we carefully select the full node to issue a transaction, the performances definitely
improve. In fact, the use of the “Adaptive RTT” heuristic has a low amount of errors,
on average around 0.8% and average latency amounts to 23 seconds. However, this
is still far from a real-time update of the DLT and the level of acceptability of latency
values truly depends on the application scenario. In terms of scalability, results
in Table 1 show that in all cases, average latencies increase significantly with the
number of users. There is an important difference between the 60 and 240 users
scenario. In the case of 240 users, we have a message generation rate of about ∼ 3
msg/sec to be issued to the IOTA DLT. If we assume that the workload is evenly
distributed among all the nodes in the pool, then, each node receives on average a
new message request every ∼ 20 sec. Bearing in mind that, at best, it takes 23 sec
for a full node to completely process a message, then we see that an initial overhead
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of a few seconds leads to a huge increase at the end of the test, i.e. ∼ 73 sec in the
“Adaptive RTT” heuristic. This means that further improvements are needed to solve
scalability issues in this scenario.

Table 2 Latencies and errors when sending messages to IPFS nodes [55].
# users IPFS Node Data Size Avg Latency Conf. Int. (95%) Errors

10
Proprietary Small 0.19 sec [0.18, 0.2] sec 0.0%

Large 1.22 sec [1.17, 1.28] sec 0.0%

Service Small 9.49 sec [9.09, 9.9] sec 0.0%
Large 6.16 sec [5.75, 6.57] sec 0.0%

40
Proprietary Small 0.59 sec [0.57, 0.62] sec 0.0%

Large 3.42 sec [3.31, 3.54] sec 0.0%

Service Small 7.5 sec [7.18, 7.83] sec 0.0%
Large 11.3 sec [11.01, 11.58] sec 0.0%

70
Proprietary Small 2.65 sec [2.56, 2.74] sec 0.0%

Large 7.48 sec [7.3, 7.66] sec 0.0%

Service Small 6.22 sec [6.09, 6.34] sec 0.0%
Large 8.58 sec [8.42, 8.74] sec 0.0%

100
Proprietary Small 1.53 sec [1.48, 1.58] sec 0.0%

Large 20.27 sec [19.71, 20.83] sec 83.33%

Service Small 6.81 sec [6.69, 6.92] sec 0.0%
Large 12.91 sec [12.68, 13.14] sec 0.21%

4.2.2 IPFS

In this assessment, we used a single DFS node with two different implementations,
while varying the number of users, i.e. we tested different cases with a specific number
of users associated with a single DFS node. We assessed two different scenarios: i)
we setup an IPFS node, i.e. Proprietary, on a dedicated device connected to other
nodes in the main IPFS network and devoted it to only handle requests coming from
our application; ii) we tested a public IPFS node Service, i.e. the Infura service
provider [26], that offers free access to IPFS. Tests were conducted in order of
dimension (small files first, then larger ones) and users number (from 10 to 100). The
performance evaluation has been designed as a stress test in which each simulation
sends requests to the two different types of IPFS nodes following the buses real
traces. A simulation lasted 15 minutes and sent exactly 15 messages for each user.

Table 2 shows the latency recorded during the tests. In general, we noticed better
performance when a dedicated node is employed. The results show that the IPFS
Service has a similar behavior with both small and large files. This is due to the
fact that it has more resources than the Proprietary node, which is then unable to
cope with larger files. In the stress test that we implemented, the IPFS Proprietary
performances get worse when increasing the number of users. Furthermore, there is
a turning point with 80 users where, overall, performance degrades in the presence
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of large files, while latencies with small files remain stable (or even decrease). In
general, IPFS Proprietary always works better except for over 80 users in the case
of large files. This means that a dedicated node is always preferable, but must be
limited to a rate of 60-70 users requests per minute.

4.2.3 Decentralized Access Control

In a second experiment we measured the amount of time required to perform
access control operations using the implementation of the keys distribution, i.e.
OpenEthereum client [36], called SS, and Umbral [16], called TPRE. The tests were
performed using a network of 25 interconnected nodes with the aim to emulate the
real DLTs and the distributed systems use cases.

Table 3 Threshold latencies (mean) when encrypting (+ distributing) and decrypting messages for
a Decentralized Access Control [53].

Threshold SS Encryption TPRE Encryption SS Decryption TPRE Decryption
5 1024 ms 176 ms 192 ms 130 ms
10 1017 ms 182 ms 233 ms 189 ms
15 1030 ms 183 ms 265 ms 245 ms
20 1045 ms 185 ms 349 ms 309 ms
25 1069 ms 190 ms 371 ms 376 ms

Table 4 Nodes number latencies (mean) when encrypting (+ distributing) and decrypting messages
for a Decentralized Access Control [53].

# nodes SS Encryption TPRE Encryption SS Decryption TPRE Decryption
5 397 ms 120 ms 148 ms 104 ms
10 549 ms 135 ms 148 ms 101 ms
15 666 ms 147 ms 175 ms 108 ms
20 843 ms 163 ms 178 ms 108 ms
25 952 ms 175 ms 188 ms 110 ms

We emulated from 10 to 100 data consumers asking for access to the user’s
bus data after they have been added to the ACL, then we averaged the result. The
results of the test carried out allow us to evaluate the goodness system in terms of
performances:

• Threshold variation: involves the variation of 𝑡 from 5 to 25, with number
of nodes 𝑛 = 25 and message size set to 30 Bytes. As the Table3 shows,
the encryption latency time remains mostly constant, ∼180ms for TPRE and
∼1045ms for SS, while the decryption time increases linearly with 𝑡. The biggest
time difference between the two schemes comes from the actual generation and
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Table 5 Message size latencies (mean) when encrypting (+ distributing) and decrypting messages
for a Decentralized Access Control [53].

Size SS Encryption TPRE Encryption SS Decryption TPRE Decryption
10B 1026 ms 174 ms 126 ms 111 ms
50B 1022 ms 174 ms 126 ms 109 ms
100B 1025 ms 177 ms 125 ms 110 ms
500B 1025 ms 175 ms 125 ms 109 ms
1KB 1027 ms 176 ms 126 ms 108 ms
5KB 1027 ms 185 ms 129 ms 109 ms
10KB 1031 ms 178 ms 135 ms 109 ms
50KB 1071 ms 177 ms 178 ms 110 ms
100KB 1127 ms 178 ms 231 ms 116 ms
500KB 1541 ms 196 ms 642 ms 127 ms
1MB 2054 ms 220 ms 1150 ms 151 ms
5MB 6214 ms 394 ms 5278 ms 305 ms
10MB 11456 ms 608 ms 10452 ms 502 ms

distribution of the key shares (in the encryption phase), i.e. a surplus of ∼792ms
from TPRE to SS.

• Number of nodes variation: threshold value 𝑡 was set to 2 and the message size
was set to 30 KB. Generally, as expected, the time costs of operations increase
with the number of nodes 𝑛. However, we must note the fact that the results in
Table 4 grow much faster for SS rather than for TPRE. This makes the TPRE
method more scalable.

• Size of messages variation: 𝑛 was set to 25 and 𝑡 = 2, while the size of the
message varied. Results reported in the Table 5 suggest that the TPRE scheme
scales better than SS. From 10 Bytes to 1 MB TPRE latency raises slightly,
while SS has a clear inflection point when the message size is set to 100 KB and
then skyrockets from 1 MB onward.

5 Discussion

To fully exploit their potential and to promote the development of ITS, several
novel challenges must be faced. In ITS, data gathering, communication, analysis and
distribution among individuals vehicles, infrastructures and services can be built in
a “centralized” way or in a “pure P2P”, as shown respectively in Sections 2.1 and
2.2. However, in both cases it may become difficult for users to maintain control over
their own data and guarantees for data traceability, verifiability and immutability are
not always met. For this reason, we argue that the integration of DLTs, DFS and
smart contracts can help with the creation of a framework providing data integrity,
confidentiality, access control and persistence. An important and critical outcome
of this work is concerned with the implementation and experimental assessment we
performed, showing the related results of the technologies available at the moment.
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It is well known that decentralized and secure DLTs that enable the distributed
execution of smart contracts, such as Ethereum in our implementation, still have
scalability issues [5]. Here, thus we focused on testing out DLTs and DFS where
data is uploaded.

Latencies measured to store data into the considered DFS, i.e. IPFS, can be con-
sidered acceptable for general ITS scenarios. In this case, as a measure of scalability,
the best performances were obtained when the number of dedicated IPFS nodes
followed the equation #𝑛𝑜𝑑𝑒𝑠 = #𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑠𝑒𝑐
, where #𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 is the number of IPFS

upload requests generated by the users in our scenario. On the other hand, for what
concerns the employed DLT, i.e. IOTA, we conclude that at the moment of the test
execution the results were not viable for real-time ITS applications, but acceptable
for less demanding services. Tests show a latency between 23 and 27 seconds for
0.75 to 1.5 MAM messages insert requests per second, with, at best, an experienced
𝑡 𝑝𝑠, i.e. transactions per second, of 0.13 (considering 1 MAM message roughly
equal to 3 IOTA transactions). This means that, for a latency on average of ∼ 25
seconds, with a configuration similar to ours during tests, available IOTA nodes
in such a scenario should scale following #𝑛𝑜𝑑𝑒𝑠 ≥ 𝑘×#𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑠𝑒𝑐
, with 𝑘 = 53 and

where #𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 is the number of MAM messages insert requests generated by the
users in our scenario. Hypothetically, having a DLT protocol that allows 𝑡 𝑝𝑠 = 1,
would require having available IOTA nodes in such a scenario that scale following
the same formula but with 𝑘 = 2.

We have focused on data protection through encryption, using For what does
concern decentralized access control we employed two different schemes, i.e. SS and
TPRE. At first we discussed their qualitative differences, then we compared them in
terms of execution time. Our performance evaluation shows that, in respect to SS,
TPRE is: (i) faster when increasing the size of the messages; (ii) more scalable, as it
better manages the increase in the number of nodes executing the protocol; (iii) more
efficient when increasing the threshold value, due to its shares generation method.
On the other hand, TPRE has the drawback of requiring the data owner to generate
a re-encryption key for each new data consumer.

Clearly enough, an adequate ITS infrastructure must be set in all the cases, in
order to build a scalable architecture able to properly handle a possibly high data
generation rate from multiple vehicles. In other words, we think that the issue is
concerned more with the system deployment rather than on the DLT/DFS protocol.
For instance, an edge computing architecture can be merged with the framework and
used to geographically place node gateways, which receive data from vehicles and
insert them into DLT/DFS.

5.1 New DLT proposals

To overcome the scalability issues described in the above discussion, several new
approaches are emerging in the DLTs scenario. New proposals include solutions
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where improvements are made directly on-chain, i.e. at layer one, and solutions that
build on top of that layer and are executed off-chain, i.e. layer two.

Off-chain solutions are implemented separately from the layer one DLT protocol
and require no changes, in order to derive their security directly from the layer one
consensus. Optimistic Rollups, for instance, are a layer two scaling solution built for
the Ethereum blockchain where computation is partly executed off-chain and data is
maintained on-chain [46]. Its aim is to increase the blockchain transactions per second
by a factor of a hundred, or even a thousand, and then also to decrease transaction fees.
Another layer two scaling solution is the use of side chains. In particular, it consists
of using another blockchain, i.e. the sidechain, that runs a faster or lighter protocol,
in order to manage assets in the original blockchain, i.e. mainchain. For instance, the
sidechain can ensure asset security using the Plasma framework and a decentralized
network of Proof-of-Stake validators [40]. Furthermore, there is currently a rise of
technologies that operate using the same protocol for executing Ethereum Smart
Contracts but with fewer latencies and reduced gas price. For instance, Polygon [39]
has achieved up to 10 000 transactions per seconds on a single sidechain through
internal tests. In general, it has been shown that implementing an Ethereum private
network using Proof of Authority consensus mechanism, with optimal configuration,
can reach up to 1000 transactions per second [48].

On-chain solutions usually involve the use of different forms of ledgers, for in-
stance a DAG such as in IOTA or a sharded ledger. Given that we already presented
and discussed on the IOTA DLT latencies, furthermore we conducted preliminary
tests with other possible DLTs that implement novel techniques to improve respon-
siveness and scalability, i.e. Radix, which is specifically based on sharding, obtaining
interesting results [43]. In a few words, sharding consists in breaking the ledger into
smaller, more manageable chunks, and distributing those chunks across multiple
nodes, in order to spread the load and maintain a high throughput. At the time of
writing, the Radix technology is still in its infancy. Nevertheless, we exploited the
test network to issue transactions on the ledger. Thus, obtained results cannot be con-
sidered accurate and it is too early to give an overall judgment on this DLT. However,
we obtained very low latencies (below 1 sec), with a non-negligible (but low) error
rate. We stress the fact that these results cannot be compared with those obtained for
IOTA. In fact, in IOTA we exploited the main network, while in Radix we had to
employ a preliminary testnet, with few nodes involved in the ledger management (∼ 6
nodes) and basically no additional workload, apart from our tests. As a matter of fact,
comparable results can be obtained if tests are executed on the IOTA test network,
where the PoW is faster (we obtained average latencies around ∼ 2 sec). Moreover,
two possible problems must be faced in this case. The first one is related to the fact
that Radix requires fees to add a transaction to its ledger. This might make the costs,
for supporting a smart transportation system application, prohibitive. Moreover, an
open security question arises, i.e. if we decrease the number of nodes that validate
transactions (as the sharding does), then does the risk of a security breach increase?
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6 Conclusions

The framework we presented in this work shows a possible specification for taking
advantage of decentralized architectures to build reliable and modern services for In-
telligent Transportation Systems (ITS), on the basis of data sharing and management.
The resulting framework integrates DLTs, DFS, smart contracts and authorization
protocols. This was a response to the need and importance of being able to optimize
the use of resources and data in ITS, but not limited to that use case. The solution we
have shown optimizes data sharing from four points of view, namely data integrity,
confidentiality, access control and persistence. Our experimental evaluation of the
implementation of such a system using currently available technologies shows an
acceptable feasibility for less demanding ITS services, i.e. non-real-time services.
However, many issues are left open and pave the way for new studies on the optimiza-
tion of such a system and the integration of new technologies: (i) the optimization of
the use of algorithms for managing distributed ledgers (many solutions are particu-
larly CPU and network intensive), (ii) the optimization of data placement, (iii) the
optimization of the infrastructure supporting such a distributed system by an ad-hoc
deployment of nodes.
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