
Received: 31 December 2021 - Revised: 8 February 2022 - Accepted: 15 March 2022 - IET Networks
DOI: 10.1049/ntw2.12037

OR I G INAL RE SEARCH

Complex queries over decentralised systems for geodata retrieval

Mirko Zichichi1 | Luca Serena2 | Stefano Ferretti3 | Gabriele D'Angelo2

1Ontology Engineering Group, Universidad
Politécnica de Madrid, Madrid, Spain

2Department of Computer Science and Engineering,
University of Bologna, Bologna, Italy

3Department of Pure and Applied Sciences,
University of Urbino, Urbino, Italy

Correspondence

Mirko Zichichi, Departamento de Inteligencia
Artificial (DIA), Universidad Politécnica de Madrid,
ETS de Ingenieros Informáticos (ETSIINF),
Campus de Montegancedo s/n, Boadilla del Monte
(Comunidad de Madrid), 28660, Spain.
Email: mirko.zichichi@upm.es

Funding information

Università degli Studi di Urbino Carlo Bo, Grant/
Award Number: Bit4Food; H2020 Marie
Skłodowska‐Curie Actions, Grant/Award Number:
814177

Abstract
Decentralised systems have been proved to be quite effective to allow for trusted and
accountable data sharing, without the need to resort to a centralised party that collects all
the information. While complete decentralisation provides important advantages in terms
of data sovereignty, absence of bottlenecks and reliability, it also adds some issues con-
cerned with efficient data lookup and the possibility to implement complex queries
without reintroducing centralised components. In this paper, we describe a system that
copes with these issues, thanks to a multi‐layer lookup scheme based on Distributed Hash
Tables that allows for multiple keyword‐based searches. The service of peer nodes
participating in this discovery service is controlled and rewarded for their contribution.
Moreover, the governance of this process is completely automated through the use of
smart contracts, thus building a Decentralised Autonomous Organization (DAO). Finally,
we present a use case where road hazards are collected in order to test the goodness of
our system for geodata retrieval. Then, we show results from a performance evaluation
that confirm the viability of the proposal.

1 | INTRODUCTION

The digitalisation process, which has been ongoing over the
last decades, has seen data management and data delivery
become crucial issues. The transformation brought about by
digital technologies has data at its core and it had a significant
impact on economies and societies around the world. The
ability to easily get hold of data has the potential to create
several new services based on data and new markets where
more and more users are consumers and providers at the same
time. However, obtaining large amounts of data that is not
from a dubious (or false) origin is often a challenge. In order to
cope with the increasingly higher number of content that is
demanded through the Web, multiple solutions for efficient use
of the Internet have been designed. In particular, thanks to the
decentralisation of content storage and delivery, it is possible to
avoid the single point of failure, while reducing the workload at
data centres and allowing a distribution of data that remains
‘closer’ to the original data producer. Decentralisation also

fosters the creation of open systems, where participants can
freely join the system and then contribute to its functioning.

Recently, Distributed Ledger Technologies (DLTs) and a
realm of decentralised systems, for example, Decentralised File
Storages (DFS), have emerged as Peer‐to‐Peer (P2P) technol-
ogies capable of offering interesting features related to data
validation and trustfulness [2, 3]. DLTs have gained popularity
with the advent of cryptocurrencies, which allow users to trade
crypto‐assets without any central entity being involved,
ensuring transparency and data integrity. By creating a com-
mon, decentralised and trustless infrastructure, it will be
possible for data consumers and providers to interact and
collaborate in P2P interactions [4, 5]. Benefits often cited of
DLTs, indeed, include the enabling of secure transactions be-
tween untrusted parties through consensus mechanisms, high
availability, and the ability to automate and enforce processes
through smart contracts [6]. Besides the financial use case,
DLTs and DFS provide some properties such as data integrity,
authenticity, confidentiality and auditability, which are used to

An early version of this work appeared in [1]. This paper is an extensively revised and extended version where more than 50% is new material.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2022 The Authors. IET Networks published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Netw. 2022;1–16. wileyonlinelibrary.com/journal/ntw2 - 1

https://doi.org/10.1049/ntw2.12037
https://orcid.org/0000-0002-4159-4269
https://orcid.org/0000-0002-7951-4682
https://orcid.org/0000-0002-1911-4708
https://orcid.org/0000-0002-3690-6651
mailto:mirko.zichichi@upm.es
https://orcid.org/0000-0002-4159-4269
https://orcid.org/0000-0002-7951-4682
https://orcid.org/0000-0002-1911-4708
https://orcid.org/0000-0002-3690-6651
http://wileyonlinelibrary.com/journal/ntw2

build novel applications for a ‘more’ decentralised Internet [7].
Furthermore, DFS and in general other P2P‐based technolo-
gies might also have a prominent role against censorship, since
shutting down a server will not prevent contents from being
available on the Internet. A relevant example is the shutdown
of Wikipedia that happened in 2017 within certain countries,
with the InterPlanetary File System (IPFS) that was still able to
guarantee access through mirroring [8].

One of the concerns, that is still open with respect to these
novel technologies, is related to the data discovery and lookup
operations. Data inserted in DLTs and DFS are usually un-
structured and no efficient mechanisms are available to query
certain kinds of information such as, for instance, data
generated by sensors in a given geographical area. Thus, even if
anyone can run public DLTs and DFS nodes, such as Ether-
eum [9], IOTA [10] and IPFS [11], data lookup can be very
slow and expensive. In fact, data are rarely stored in a format
that can be consumed directly and they need to be filtered and
indexed before executing any complex query. Data are refer-
enced through addresses or indexes that, most of the time, are
not related to the content of the data and thus are not useful
for their categorisation. Specifically, data can only be accessed
by knowing their respective identifier or location and cannot be
searched based on the specific content. Put in other words,
these systems lack a viable (and decentralised) data manage-
ment scheme that enables the efficient execution of ‘complex’
queries on top of them.

In this paper, we propose a decentralised system for key‐
value metadata‐based lookup, which allows for retrieving
contents stored in DLTs and/or DFS. Our approach relies on
the use of a Distributed Hash Table (DHT) as a layer placed
on top of the DLTs/DFS, which offers the possibility to
perform multiple keyword searches. The DHT is essentially a
peer‐to‐peer hypercube overlay structure [12]. Each domain
of the hypercube corresponds to a keyword and specific
DHT nodes are responsible for a certain portion of the ID‐
space. Through navigation inside the hypercube, it is possible
to query the node that maintains information about contents
stored in the DLT/DFS that have certain keywords as
metadata.

The first contribution of this paper consists in describing
the design of such a hypercube‐based DHT architecture on
top of DLTs and/or DFS. The hypercube is a logical layout
in which there are 2r nodes, each one labelled with a r‐bit
string identifier (ID) and connected to the r nodes whose ID
differs by only one bit [12]. Each node is responsible for a
specific keywords set, derived from their ID. An interesting
aspect of the specific hypercube‐based DHT is that it allows
the user to efficiently search for objects matching a specific
keywords set K. Moreover, it allows for searching the
supersets of K, thus enabling the construction of queries that
are more complex than a single <keyword, value> lookup.
The hypercube structure allows for optimising the routing of
the queries, by limiting the number of hops needed to locate
contents. Even if our approach is independent of the un-
derlying DLT and it can be easily extended to other distrib-
uted ledgers and DFS, we provide a specific system design

that is tailor‐made for IOTA [10]. To the best of our
knowledge, at the time of writing, this is the first example of
using such a solution over DLTs and/or DFS.

The second main contribution is about the creation of a
framework for the governance of the layer‐two P2P architec-
ture, to improve the scalability and the decentralisation of the
system. Usually, applications built upon P2P networks are
supported by nodes that have no particular incentive to keep
them operational but are only interested in their use, for
example, BitTorrent. Therefore, we leverage DLTs to build a
Decentralised Autonomous Organisation (DAO) [13] for the
governance of the DHT network. We envision an approach
that is based on the creation of a DAO for those actors who
have actively contributed to the functioning of the system, with
smart contracts involved in managing rewards and organisa-
tional decisions.

The third main contribution is about a case study in
which the proposed architecture is used for geodata storing
and retrieval. We show how this setup can significantly
benefit from Hypercube DHT specific characteristics. Geo-
data is defined as data holding an implicit or explicit asso-
ciation with a relative location on Earth, that is, a geographic
location or geographic position [14]. One of the most com-
mon representations of geodata is in the form of latitude and
longitude coordinates, but generally, geodata can take the
form of vectors, rasters, multi‐temporal points or different
types of geotagged data [15]. More specifically, the use‐case
we present consists of a service that is designed for road
hazard detection in intelligent transportation systems. This
setup will demonstrate how useful the hypercube structure
can be for managing geodata, for example, for the creation of
Location Based Services [15].

Finally, we report an experimental validation of the
implementation of the proposed architecture. In particular, we
provide results showing how the size of the hypercube and the
number of objects stored in the DHT affect the search pro-
cedures. We also provide results obtained from a detailed
simulation analysis, which confirm that our system allows for
multiple keyword searches in a reasonable time (i.e. in the order
of the logarithm of the number of hypercube nodes). Finally,
we evaluate the smart contracts used for the formation of the
DAO, implemented to be executed on the Ethereum block-
chain, in terms of operations execution cost.

The remainder of this paper is structured as follows.
Section 2 provides the background and related works. In
Section 3, we present the system architecture for the
decentralised system based on the Hypercube DHT and in
Section 4 a technical solution for its governance is discussed.
In Section 5, an experimental evaluation is provided and then
discussed in Section 6. In Section 7, we then provide the final
remarks.

2 | BACKGROUND

In this Section, we introduce background notions needed for
the rest of the paper and then we discuss the related works.

2 - ZICHICHI ET AL.

2.1 | Distributed Hash Table

A Distributed Hash Table (DHT) is a decentralised system for
the distributed storage of contents that provides the func-
tionalities of a hash table, that is, a data structure that effi-
ciently maps ‘keys’ into ‘values’. The rationale of this approach
is to store the information in the various nodes of the system,
providing a routing mechanism to easily get which node owns
a certain resource [12]. Each local view of the DHT nodes will
look like a traditional hash table, with a mapping from a key
(i.e. the univocal representation of an item) to values (i.e. ad-
dresses of the peers owning such a resource). In addition, each
node stores a partial view of the entire network, with which it
communicates for routing information. To reach nodes from
one part of the network to another, a routing procedure
typically traverses several nodes, approaching the destination at
each hop. The association of objects to DHT nodes is obtained
through the use of a hash function, a one‐way function that
maps any item into a binary sequence of n bits. The idea is to
distribute the storage workload among the DHT nodes ac-
cording to the key (i.e. the n bit string obtained after having
applied the hash function) of the objects. Each DHT is iden-
tified itself through an n bit ID, which lies in the same ID
space used to identify contents. Then, based on its ID, each
node is in charge of maintaining information on those contents
that are in a specific ID space interval. The lookup of a content
x thus becomes looking for the node in the DHT that manages
a subset of the ID space that contains x [16]. This type of
infrastructure has been used as a key element to implement
complex and decentralised services, such as Content‐
Addressable Networks (CANs) [17], DFS [11], cooperative
web caching, multicast, and domain name services.

2.2 | Distributed Ledger Technologies
(DLTs)

A Distributed Ledger Technology (DLT) is a P2P system
where the participants maintain a copy of the ledger, and there
is a consensus mechanism that allows all the nodes to have the
same view of the stored information. Consensus mechanisms
are implemented in order to enable two parties to transact
directly without the need for a third‐party. The main peculiarity
of DLTs is that they ensure untampered data availability. Data
written on the ledger are trustworthy, because DLT protocols
ensure their integrity, immutability, and authenticity. Thus, they
promote the development of trustful and reliable service ap-
plications [18, 19]. There are different implementations of
DLTs, each one with its pros and cons. One of the main dis-
tinctions lies in the support of smart contracts, for example,
Ethereum [6]. This feature is quite often in contrast with other
key features, related to the level of scalability and responsive-
ness of the system [20]. Conversely, some implementations are
thought to provide better scalability at the expense of lacking
some features, for example, based on Direct Acyclical Graphs
(DAGs).

While layer‐one protocols and technologies in DLTs define
the form of the ledger, its distribution, consensus mechanism
and features, layer‐two solutions are built on top of layer one
without changing its trust assumptions, that is, the consensus
mechanism, or the structure [21]. Layer‐two protocols allow
users to communicate through private channels, reducing the
transaction load on the underlying DLT.

2.2.1 | IOTA

IOTA is a DLT that allows hosts in a network to transfer
immutable data among each other. In the IOTA ledger, that is,
the Tangle [10], the vertices of a DAG represent transactions
and edges represent validations to previous transactions. The
validation approach is thought to address two major issues of
traditional blockchain‐based DLTs, that is, latency and fees.
IOTA has been designed to offer fast validation, and no fees is
required to add a transaction to the Tangle [22]. When a new
transaction is to be issued, two previous transactions must be
selected (i.e. tips selection) and approved by referencing those
in the transaction. The result is represented using directed
edges in the Tangle. To validate a transaction a Proof‐of‐Work
(PoW) is performed (in order to deter denial of service attacks
and other service abuses). In IOTA, the transactions are called
messages and are referenced by a message ID (we will use
these terms through the paper).

2.2.2 | Smart contracts and their use cases
(Decentralised Autonomous Organisation and
decentralised finance)

Smart contracts are programs whose execution is performed in
a distributed way. In Ethereum [9], all the participants receive
the same inputs and perform a computation on the basis of a
smart contract code that leads to the same outputs. Each
process is thus completely traced and permanently stored on
the blockchain.

Smart contracts can be used to automatise and supervise
the exchange of digital or physical assets, to create tokens, that
is, the representation of physical assets or utilities such as
ERC20 Tokens [23], and to allow the management of a DAO
[13]. In order to enable the decentralised management of a
DAO, smart contracts implement transactions, currency flows,
rules and rights within the organisation. DAO members can
make proposals for the management of the organisation and
also discuss and vote on those through transparent mecha-
nisms. Members can also interact through smart contracts and
tokens can be sent or received. Usually, tokens grant their
holder a certain set of rights within the DAO.

Decentralised finance (DeFi) is a term that refers to novel
P2P financial infrastructures, based on smart contracts, that are
non‐custodial, permissionless, openly verifiable and compos-
able [24]. With DeFi protocols such as Decentralised Ex-
changes (DEX), anyone can engage in non‐custodial exchange

ZICHICHI ET AL. - 3

of on‐chain digital assets, for example, tokens. In contrast to
traditional finance where an asset's liquidity is based on the bid
and ask order prices, in the most used DeFi protocols, such as
Uniswap. usually assets are ERC20 tokens and their liquidity is
provided algorithmically through a simple pricing rule within a
smart contract [24].

2.3 | Decentralised file storage

Decentralized File Storages (DFS) offer an alternative to the
traditional client‐server models, that is, where a domain name
is provided and is then resolved to an IP address. In content
based addressing, items are directly queried through the
network rather than establishing a connection with a server. In
order to know which node in the network has the requested
contents, it is possible to rely on a DHT system that is in
charge of mapping the items with the addresses of the peers
owning such data. DFS follows this approach and offers high
data availability and resilience using data replication.

The IPFS is a DFS and a protocol thought for distributed
environments with a focus on data resilience [25]. The P2P
network that runs the IPFS protocol, stores and shares files in
the form of IPFS objects that are identified by a CID (i.e.
Content IDentifier). This CID consists of the digest produced
when a hash function is applied to a file and it is used to
retrieve the referenced IPFS object. However, it provides no
means of searching for a file without owning it, since its CID
(i.e., hash digest) is required.

2.4 | Related works

The popularity of IoT devices and smartphones, and the
associated generation of large amounts of data derived from
their sensors, have resulted in the interest of individuals in
the production and consumption of data via a data
marketplace [26]. Making data (which are mostly personal)
available for access and trade is expected to become a part
of the data‐driven digital economy [27]. As introduced
earlier, the use of DLTs has been proposed for the imple-
mentation of data marketplaces [28, 29] to take advantage
of: (i) reliance on third party platforms not needed; (ii)
better resilience against network partitioning and single
points of failure; (iii) privacy‐preserving mechanisms [19].
Most of the related works investigate the data distribution
through DLTs, focussing in particular on the use of off‐
chain storage based on DFS with data links referenced in
DLTs [3, 18, 19]. In [2], the authors provide the imple-
mentation of a data marketplace based on the use of DFS
for storing data and a payment protocol that exploits
Ethereum smart contracts [6, 30]. Similarly, in [4, 5], the
proposed systems are based on P2P interactions and smart
contracts to reach an agreement, while also integrating other
components such as the IOTA DLT.

On the other hand, decentralised data search on DLT and
DFS is a broader field that has been addressed by both scholars

and developers. The Graph is one of the first protocols with
the aim to provide a ‘Decentralised Query Protocol’ [31]. The
Graph network consists of a system built upon Ethereum and
IPFS, which allows users to query data stored by means of
these two technologies. The Graph users can query several
indexers nodes by paying for their metred usage, within a query
market. The organisation of the network is similar to what is
referred to as DAO, however their method for storing indexes
is different from our proposal. Indeed, instead of using a DHT
network storing data, the Graph P2P network is based on the
use of a Service Addressable Network used to locate nodes
capable of providing a particular service, which can be any
arbitrary computational work.

Specifically for IPFS, in order to overcome the file search
limitation, a generic search engine has been developed, namely
‘ipfs‐search’ [32]. This solution is rather centralised and does
not escape the problem of concentration similar to the con-
ventional web. In response to this, a decentralised solution
called Siva [33] has been proposed. An inverted index of
keywords is built for the published contents on IPFS and users
can search through it, however Siva is proposed as an
enhancement of the IPFS public network DHT and does not
feature any optimisation for a keyword storage structure apart
from the use of caching. In [34], the authors propose a layer‐
one keyword search scheme that implements oblivious
keyword search in DFS. Their protocol is based on keywords
search with authorisation for maintaining privacy with retrieval
requests stored as a transaction in a blockchain (i.e. layer one).
Finally, a layer‐two solution for keywords search in DFS has
been proposed in [35], where a combination of a decentralised
B+Tree and HashMaps is used to index IPFS objects [11].

3 | SYSTEM ARCHITECTURE

Our contribution focuses on the design of a decentralised
system that allows for queries based on multiple keyword
searches. We refer to it as the Hypercube DHT and to its
governance. This solution can be leveraged in several cases,
especially when decentralisation is required. In general, the
kind of applications that can use our proposed approach is the
one that depends on data stored on DLTs and DFS. Examples
are of decentralised applications are those that validate smart
city crowdsensed data through DLTs [3] or distributed col-
lections mirrors such as the Wikipedia over IPFS [8].

Figure 1 shows a layered view for the system architecture
of our decentralised data lookup service. It is based on the
following components:

0. A network of nodes underlying a decentralised system, for
example, DFS or DLT network.

1. A decentralised system that acts as layer one of a distributed
application. This can be either:
� a DFS, used to store data/files in an encrypted form and

offering high availability [36];
� a DLT, which provides a ledger for data indexing and

validation in the form of hash pointers [3, 37].

4 - ZICHICHI ET AL.

2. TheHypercubeDHT (described in Section 3.2) is a layer‐two
solution on top of the previous layers. A mapping of key-
words to DFS/DLT identifiers consists of the link between
the layer one and layer two. The Hypercube DHT thus stores
these keywords and provides a distributedmechanism for the
search of data in the underlying decentralised systems.

3. An upper layer embodies a set of smart contracts, tech-
nologies and processes forming the governance of the
Hypercube DHT network (see Section 4).

3.1 | Decentralised system for data sharing

Before going into the detail of the Hypercube DHT specifi-
cation, we also explain its interoperability with other decen-
tralised systems, such as DLTs and DFS. It is important to
emphasise the fact that the Hypercube DHT solution is
agnostic to any underlying system. The only requirement that
the underlying system must have is to make use of a unique id
to refer to a specific piece of information. The Hypercube
DHT represents ‘just’ the means for binding specific keywords
to a specific id, in a decentralised fashion.

Among the many possible implementations of DFS and
DLTs we decided to focus on the Hypercube DHT interop-
erability with the IPFS DFS and with the IOTA DLT (both
introduced in Section 2).

The rationale behind the choice of IPFS is twofold: (i)
this implementation of a DFS is the most referenced and
deployed in both the academic research and ‘decentralised
web’ applications; (ii) it uses data identifiers that do not focus
on where the content is stored (e.g. web urls), but it forms a
kind of address based on the content itself, that is, the CID,
thus paving the way to further data validation and efficiency
management. This kind of identification supports InterPlan-
etary Linked Data formats, enabling decentralised data
structures to be universally addressable and linkable and thus
allowing the creation of several addressable decentralised
applications [38].

In choosing the DLT, our choice was primarily motivated by
the specific use case considered in this paper. This consists of
data sharing in general and geodata in particular (with a focus on
vehicular geodata in Section 5). While blockchains such as
Ethereum and EOS offer the means to build general‐purpose
decentralised applications with good success [39], we have
opted for the IOTA DLT in our work, because of its highly
compatible features with data sharing scenarios. In fact, the low
latencies for inserting transactions and the absence of fees to add
data into the Tangle make IOTA particularly suitable for our
case study. While other DLTs, such as Steem [40], offer feeless
transactions, IOTA has been designed for use cases involving
the exchange of data between (IoT) devices. In our case, the
IOTA's feature of treating data messages as single non‐payable
and feeless transactions is favourably exploited by the Hyper-
cube DHTmechanisms. While several solutions are possible, we
consider three principal decentralised data management
instances:

DFS: Taking IPFS as a reference example, an IPFS Ob-
ject, for example, a file, is uniquely identified through a
CID. When data are uploaded to IPFS and referenced
using CID, then, the Hypercube DHT will store the
mapping between keywords and data's CIDs (Figure 2,
left).
DLT: Taking IOTA as a reference example, a Hypercube
DHT implementation would store a DLTAddr, that is, a
generic reference to a DLT address or transaction identifier
(see Figure 2, right).
DLT+DFS: The combination of DLTs and DFS is a
prominent solution when data sharing is involved [36].
Data can be stored in a DFS and then referenced in a
DLT, for example, using the CID in IPFS. Storing data
into a DFS usually requires lower latency with respect to
those that can be experienced using DLTs, while the latter
provide validation through the publication of the data
digest into the ledger and the use of smart contracts.
Moreover, this solution is better suited for personal data in
order to comply with some regulations, for example, the
right to be forgotten [36]. In this DLT‐DFS ‘mixed’ case,
the Hypercube DHT is used for only storing one refer-
ence, that is, the DLTAddr of an object in the ledger that
subsequently refers to an object in the DFS using a hash
pointer (Figure 2, bottom).

F I GURE 1 Layers in the context of Distributed Ledger Technologies
(DLTs). Layer zero consists of the DLT (or Decentralised File Storages
(DFS)) network, while layer one is the set of software frameworks run by
the network nodes, for example, the ledger (or the file storage). Layer‐two
solutions are the ones that leverage layer one for providing other services,
that is, the Distributed Hash Table (DHT) Keyword Search in our case.
Layer three consists of the set of technologies and processes that form the
governance of the layer‐two solution, that is, the DAO in our case

ZICHICHI ET AL. - 5

From now on we will only refer to the IOTA DLT and we
will describe how the mapping of keywords to references in
IOTA is done, before continuing with the queries description.
In particular, we refer to the use of IOTA messages (i.e.
transaction) to enable data sharing in the form of message
streams. Based on this model, thus, the retrieval of contents is
based on lookup for references to IOTA messages. These
messages contain data itself (in an encrypted form) or a
reference to the data stored in a DFS, that is, hash pointers.

Without the use of the Hypercube DHT, in order to obtain
information from a IOTA message, it is necessary to know the
exact address of the message, that is, the message id. This id
becomes what we have generally called the reference in a DLT
or DLTAddr. No mechanisms are provided by IOTA for the
discovery based on the content of certain data available in the
Tangle, since the message id value does not provide any in-
formation related to the type and kind of a message. In the
following section, we will describe how a single message
included in IOTA is indexed by a keyword set and then how
such a keyword set is exploited to lookup for specific kinds of
contents.

3.2 | Hypercube distributed hash table

ConsideringO as the set of all messages in IOTA, the idea is to
map each object o ∈ O to a keyword set Ko ⊆ W, whereW is
the keyword space, that is, the set of all keywords considered.
Thus, in general, a keyword set K ⊆W can be associated with a
data content (i.e. the metadata associated with it) or a query (i.e.
we are looking to some content associated with a specific
metadata). By using a uniform hash function h : W → {0, 1,
…, r − 1}, a keyword set K can be represented by the result of
such function, that is, a string of bits u where the 1s is set in
the positions given by one(u) = { modr(h(k))∣k ∈ K}. In other

words, each k ∈W has a fixed position in the r‐bit string given
by h(k) and that position can be associated with more than one
k (i.e. hash collision). Then, every keyword set K is represented
by a r‐bit string where the positions are ‘activated’, that is, are
set to 1, by all the k ∈ K. We use these r‐bit strings to identify
logical nodes in a DHT network, for example, for r = 4 a node
id can take values such as 0100 or 1110. Inspired by [12], we
refer to the geometric form of the hypercube to organise the
topological structure of such a DHT network. Hr(V, E) is a r‐
dimensional hypercube, with a set of vertices V and a set of
edges E connecting them. Each of the 2r vertices represents a
logical node, whilst edges are formed when two vertices differ
by only one bit, for example, 1011 and 1010 share an edge. In
the DHT, the network node represented by a vertex u is
directly connected, that is, neighbour, to a node represented by
a vertex v that shares an edge with u. The Hamming distance
can be used to find out how far apart two vertices u and v are
within the hypercube, that is, Hammingðu; vÞ ¼

Pr−1
i¼0 ui ⊕ð

viÞ, where ⊕ is the Exclusive OR operation and ui is the bit at
the ith position of the u string, for example, for u = 1011 and
v = 1010, we have Hamming(u, v) = 1.

Having this Hypercube DHT set in place, the data sharing
process works as follows (see Figure 2). Upon creation of a
data object o, it is associated with a set of keywords Ko
describing it. In particular, the Data Provider firstly inserts a
piece of data in the IOTA DLT (Figure 2, step 0) and obtains
the id of a message o (dataDLTAddr in the figure). The
reference to object o is then inserted in the Hypercube DHT
together with a set of keywords Ko that describe the piece of
data (step 1). The contacted Hypercube DHT node will use the
associated r‐bit string (step 2) to reach the logical node
responsible for K by means of a routing mechanism (similar to
the one shown in Algorithm 1), in order to obtain the set of
objects such that their related set of keywords includes the all
the keywords in Ko (step 3).

F I GURE 2 Overview of the decentralised architecture including the Hypercube Distributed Hash Table (DHT), a Distributed Ledger Technologie (DLT)
and a Decentralised File Storages (DFS), that depicts the main relations and operations for data sharing and querying

6 - ZICHICHI ET AL.

3.3 | Keyword‐based complex queries

In the Hypercube DHT system, contents can be discovered
through queries that are based on the lookup of multiple
keywords, associated with data. Such queries are processed by
the DHT‐based indexing scheme described in the previous
section. For instance, let’s say that W = {‘Bologna’, ‘San
Donato’, ‘Temperature’, ‘Celsius’}. We associate a r‐bit string
to these keywords, in this order. Thus, as an example 1010
represents the keyword set K= {‘Bologna, Temperature’}.
Let’s say that u ∈ V is the node with id equal to 1010; then u is
responsible for K and it maintains a list of message ids con-
taining the temperatures measured in the city of Bologna.

3.3.1 | Multiple keywords search

The system that we propose provides two functions for per-
forming queries based on multiple keywords:

� Pin Search ‐ this procedure aims at obtaining all and only
the objects associated exactly with a keyword set K, that is,
{o∈O∣Ko = K}. Upon request, the responsible node
returns to the requester all the message ids of the corre-
sponding objects that it keeps in its table, associated with K.

� Superset Search ‐ this procedure is similar to the previous
one, but in addition, it also searches for objects that can be
described by keywords sets that include K, that is,
{o ∈ O∣Ko ⊇ K}. Since the possible outcomes of this search
can be quite large, a limit l is set to the number of returned
results.

In the Pin Search, we need to retrieve objects only from
one node. Whilst, for Superset Search, we need to retrieve
objects from all the nodes that are responsible for a
Superset of K. Such nodes are contained in the sub‐
hypercube SH(S, F) induced by the node u responsible for
K, where S includes all the nodes s ∈ V that ‘contain’ u,
that is, ui = 1 ⇒ wi = 1, while F includes all the edges
e ∈ E between such nodes. Thus, during a Superset Search,
the induced sub‐hypercube is computed and then only nodes
in such sub‐hypercube are queried using a spanning binomial
tree as described in [12] (definition 4.2). More specifically,
the l limit is a query parameter that indicates the maximum
number of objects to return when traversing the spanning
binomial tree.

3.3.2 | The query routing mechanism

Queries can be injected into the system by users external to the
DHT to any v ∈ V DHT node. Through a routing mechanism,
a query q with a defined keywords set k will reach a node
u ∈ V that is responsible for that keyword set. If q is of type
Superset Search, then the query will reach all the nodes that are
responsible for keyword sets that include K, until the limit of
objects l is reached. This process is described in detail in

Algorithm 1. This algorithm is executed by each node, every
time it gets a new query from a neighbour or from a user. The
routing mechanism from a node v ∈ V receiving a query q
from a user, with a keyword set K and a limit l is as follows:

1. If node v is not responsible forK, that is, {h(k)∣k∈K} = one
(u)≠ one(v), then it computes, for all its neighbour nodes, the
Hamming distance to node u;

2. Node v broadcasts the query q to the neighbour w with the
lowest distance to u;

3. These two steps are repeated by w and by the subsequent
nodes, until the query q reaches u;

4. If the query q is of type Pin Search u returns the objects
references associated with K, that is, {o ∈ O∣Ko = K};

5. Else (in the case of a Superset Search) u computes its
children nodes in the spanning binomial tree of the induced
sub‐hypercube;

6. Then node u broadcasts q to the children nodes until the
limit of objects l is reached;

7. The children nodes will repeat the process from step 5 with
their children and then return the objects;

8. Finally node u returns the aggregated objects references
associated with different supersets of K, that is, {o ∈ O∣Ko
⊇ K}.

Algorithm 1 QueryRoutingMechanism

3.4 | Geoposition‐based keywords encoding

In this Sub‐Section, we consider aspecific keywords encoding
concerned with geolocation data, that is, where the metadata
that is associated with a datum and that represents the

ZICHICHI ET AL. - 7

geoposition where the datum has been generated (geodata) is
as important as the datum itself. In such cases, a mechanism
can be employed to automatically associate a given geograph-
ical position to a keywords set for the Hypercube DHT. To this
aim, we employ a conversion based on a double encoding.

The first encoding consists in simplifying the form of the
geoposition data, converting them into Open Location Code
(OLC) [41]. This code represents highly accurate street ad-
dresses, similar in length to telephone numbers, which can be
shortened to just four or six digits. The fewer the digits, the
larger the squared area represented, and vice versa. For
instance, a 4‐digit code such as 6P23 identifies a particular
squared area with a side of 110 km.

The second encoding is a particular type of logical trans-
formation that allows for the OLC of a certain geographical
location to be converted into a set of keywords, that is, posi-
tions in the r‐bit. For example, given the OLC ‘6P0000+’, one
can associate each character (or a set of characters) to a certain
position in the r‐bit string. Associating respectively the char-
acters ‘6’ and ‘P’ with r‐bit strings ‘000001’ and ‘000010’, then
the conversion of ‘6P0000+’ containing both will be the union
of both, that is, ‘000011’. Moreover, the association between
the characters and their position in the OLC must be univocal,
meaning that encoding an OLC representing a smaller area
included in a larger area must result in a r‐bit string including
the r‐bit string of the OLC representing the larger area. For
instance, an OLC representing a squared area of side 2200 km,
for example, ‘6P000000+’, is included in the OLC representing
a squared area of side 3.5 m, for example, ‘6PH57VP3+PR’;
thus, assuming ‘000011’ r‐bit string encoded from ‘6P0000+’ a
r‐bit string such as ‘101011’ can encode ‘6PH57VP3+PR’
because one(101011) ⊃ one(000011).

Take as an example the case of Figure 3, where an object
o ∈ O is stored in an IOTA message and its related geo-
position is encoded with OLC, that is, OLCo=
6PH57VP3 + PR. The OLCo is then split into a number of
pieces that is based on the dimension of the Hypercube DHT
(that dictates the precision) to create a keyword set Ko = split
(OLCo) = {6P00000000, 00H5000000, 00007V0000,
000000P300, 00000000PR}. The final r‐bit string is obtained
by the ones in the position obtained by hashing each keyword
in Ko, that is, for r‐bit string u one(u) = { modr(h(k))∣k ∈ Ko}
and u = 101011. As one can see, the precision depends on the
length of the r‐bit string and thus on the hypercube dimension.
However, this measures only how many OLC based keywords
a node would store that result in the same r‐bit string. In fact,
the more large the r, the fewer hash collisions there will be.

4 | DECENTRALISED AUTONOMOUS
ORGANISATION FRAMEWORK

The contribution presented so far in this paper describes the
use of keywords for data retrieval, and how these keywords are
saved and how to use them to execute queries, all by using the
Hypercube DHT. Layer two provides the technological means
for implementing a keyword based search solution over a
decentralised system. This can be enough for offering a
complete solution in many cases.

Themain focus of this section, on the other hand, is the layer
on top of this one (see Figure 1). It consists of technologies and
processes that form the governance of the Hypercube DHT
network, that is, the DAO. In the P2P network that supports the
Hypercube DHT, we envision the case in which the nodes are

F I GURE 3 The graphical depiction of the process of encoding an OLC into a r‐bit string, for r = 6

8 - ZICHICHI ET AL.

interested in keeping the network operational and healthy. The
aim of the node operators should be to act in the context of a
sharing economy, for example, as Wikipedia editors are
encouraged to contribute to the free encyclopaedia [42]. P2P
networks have this ‘cooperative vein’ intrinsically built into their
structure. In this context, it has been argued that the use of
DLTs can ‘crystallise’ the dynamics of a model of socio‐
economic production in which large numbers of people work
cooperatively, that is, commons‐based peer production [43]. We
are interested, then, in describing the case where, in order to
orchestrate the operational decisions and rewards, the DHT
network nodes operators can form a DAO.

4.1 | Governance layer

The governance layer is mostly based on the use of smart
contracts and the interfaces for interacting with those. Smart
contracts, indeed, enable the creation of an organisation that
takes advantage of a token‐based economy and decentralised
voting. In particular, we use Ethereum smart contracts to
structure the DAO based on the following components [44, 45]:
Token economy: The DAO is built around the use of a

unique token, that is, ‘DAOToken’, used for transferring value
(e.g. users that pay node operators), or for stacking purposes
(e.g. becoming a DAO member by time‐locking a certain
amount of tokens). The smart contract used to represent these
functions consists in an implementation of the ERC20 inter-
face [23].
Members Registry: A smart contract was developed as a

members registry, to allow token holders to time‐lock
DAOTokens and become DAO members. Any account hold-
ing any amount of DAOToken can lock some tokens for a
desired amount of time through a specific time‐lock contract.
This time‐lock contract will hold these tokens and release them
after the date set, and no one will be able to unlock those
before that date.
General Voting: A specific smart contract was developed to

allow DAO members to call for a vote and then decide on a
proposal. This contract allows any member to make a proposal
and gives everyone the opportunity to submit a suggestion to
vote regarding that proposal. Each proposal has its own debate
period and any member can vote a suggestion within that time
period. A member vote weight is proportional to the amount of
tokens lockeduntil a date that comes after the debate period ends.
Value Transfer Voting: Any extension of the previous

voting smart contract can be developed to allow a decision
taken to directly enact an operation to be executed on‐chain
(through another smart contract). For instance, DAO mem-
bers can vote to transfer some staked tokens to a specific ac-
count in the case of issuing a bounty.

4.2 | Rewarding system

In this sub‐section we describe one of the many rewarding
systems implementable, namely the reward for DAO members

passing through DeFi. For instance, in the case of the
DAOToken, a Uniswap liquidity pool smart contract [24] can
be created by locking into it x DAOTokens and an amount of y
other ERC20 tokens to be exchanged with. The value of a
single DAOToken with respect to the other token will be
proportional to the ratio y

x and such values will vary based on
the tokens that will be stacked in the pool after an exchange,
for example, buying DAOTokens will drain the reserve of the
locked DAOTokens and increase the other token's reserve.

In Uniswap, each liquidity provider receives newly minted
Liquidity Pool (LP) tokens to represent the share of liquidity
they have provided. These LP tokens can then be burnt by the
providers in order to redeem their share of liquidity (and
accrued fees obtained when exchanges happen). This means
that when a new DAOToken is created and initially distributed
to its creators, they can easily have a return on their newly
created tokens by locking them in a new liquidity pool. This is
also a way to let the general investors interested in this token to
acquire it. However, the possibility for the creators to redeem
(at any time) the liquidity they have provided, by burning the
LP tokens, makes the value of the token highly unstable. At any
moment, indeed, the investors can be left with a worthless
token due to these ‘big players’ burning LP tokens and draining
the reserve.

Based on this, in our design, the DAO is based not on the
time‐lock of the DAOToken directly, but on the time‐lock of
the LP tokens obtained by locking DAOTokens in liquidity
pools. From an implementation point of view, in Uniswap, no
changes are required because LP Tokens are compatible with
the ERC20 interface. This means that the stability of the DAO
is directly proportional to the value the DAOToken can take,
and that the power exercised by DAO members is directly
proportional to the gains/losses they are willing to make
through their behaviour, making it possible to have a strong
incentive to behave correctly.

5 | EXPERIMENTAL EVALUATION

In this Section, we provide an experimental validation of our
work. In particular, we implemented the software that each
Hypercube DHT logical node runs for maintaining the index
table and to answer the queries that it receives. Furthermore,
we developed a simulation in order to test a network populated
by a higher number of nodes, and finally, we tested a prototype
of the DAO smart contract framework.

In order to assess the viability of the solution proposed in
this paper, we implemented the software in charge of building
and maintaining the Hypercube DHT network and then we
tested it over the Road Hazard Detection use case. The DHT
software is implemented in Python and it exposes the four
main node's actions by means of the Flask server framework
[46], that is, Insert object, Remove object, Pin Search, Superset
Search. Together with the core logic methods for a logical
node, the implementation also includes an interface for
communicating with an IOTA node, in order to operate with
the DLT.

ZICHICHI ET AL. - 9

5.1 | Road hazard detection use case

The implemented use case is based on road hazard detection.
The vehicular simulation and the tests are stored as Open
Source code on Zenodo [47]. The first, fundamental step is the
creation of the data to identify road anomalies. Generally
speaking, it is possible to distinguish these techniques into two
macro‐categories (i) manual: the user himself signals the
presence of pitfalls by means of photographs or descriptions
indicating their geographical location; (ii) sensor‐based: they
use the gyroscope, accelerometer and GPS of smartphones to
detect and measure the vibrations that occur in the presence of
potholes and bumps.

The collected data are inserted into the Tangle through
simple IOTA messages. For this specific task, the data of in-
terest are the geodata related to the position where the hazard
is recorded, but many other data points are also considered in
our use case. For example, photographs, gyroscope data,
vehicle status, etc. The message id, acquired after entering the
data in the Tangle, is indexed in the Hypercube DHT by
associating it with a set of keywords that allows for its sub-
sequent retrieval. These keywords are determined by the
encoding process (previously described in Section 3). In
particular, the geoposition keywords follow what was described
in sub‐section 3.4.

In the data retrieval phase, given a certain location the
system must report all the registered road faults within that
specific area. For instance, giving in the input an OLC such
as ‘6PH57VP3+PR’ should not result in obtaining only the
road hazards for that precise location, that is, a Pin Search,
but should result in a set of hazards in a larger area, that is, a
Superset Search. Once retrieved, the data, in geospatial
format, are displayed in real‐time on the maps on users'
devices, providing navigation support. Thanks to Superset
Search, the user will be alerted of the presence of an anomaly
on the road long before being at the exact point where the
alert is located. Thus, the driver (or the autonomous vehicle)
will have a sufficient amount of time to slow down in the
immediate vicinity of the anomaly, to avoid it or to take an
alternative route.

5.1.1 | Vehicular simulation

In order to test the issuing and retrieving of data based on
geolocation, we simulated a vehicular scenario in which road
hazard detection was performed through the Hypercube DHT
and IOTA. We stress the fact that in this evaluation, while the
vehicular environment was simulated, in order to generate data
and queries, the rest of the system architecture (i.e., DHT,
smart contract execution and DLTs) was deployed and
executed in a real system (the test setup details are provided in
the next sub‐section).

The two main elements for the creation of realistic sce-
narios are the presence of vehicles and the roads they drive on.
Furthermore, a third necessary element is the presence of
potholes/obstacles along the routes. It is also necessary to

consider an aspect of complexity, that is, the presence of traffic
that allows us to stress the system and to consequently evaluate
its ability to adapt to real‐world situations. As far as the sce-
nario simulation is concerned, the following steps were
followed:

� Creation of a simulated geographical area: in our tests 10
routes were generated, represented by lists of geographical
coordinates, each of which has at least one point (latitude,
longitude) in common with another;

� Definition of the generic vehicle to be placed in the simu-
lated environment: each vehicle has a starting point, a
destination and a path to follow;

� Generation of road hazards (potholes/obstacles): randomly
generated in the simulation environment and stored in the
(real) Hypercube DHT by the vehicles passing nearby;

� Vehicle system simulation: once created, vehicles move-
ments were simulated; during its path each vehicle was in
charge of periodically (every 3 min) querying the system to
query for road hazards.

For each route, 10 vehicles were instantiated and started
simultaneously. In order to stress the DHT, for each vehicle,
the delay time between sending one query and the next was of
3 min. In a real context, on the other hand, the use of Superset
Search would allow the user to obtain aggregated data related
to vast areas, therefore, the frequency of the queries could be
quite low for each vehicle. Once the OLC has been determined
the query is directed to a randomly chosen node of the Hy-
percube DHT. From here, through the routing mechanism, the
node i.e. responsible for the specified keyword set is reached,
which, in the case of Pin Search, returns all objects associated
with it. In the case of Superset Search, on the other hand, a
maximum threshold of 10 objects is set, which are returned to
the user.

5.1.2 | Test setup

In our implementation, the same physical node can host more
than one logical hypercube node and that is what we made use
of, in order to perform the tests. We tested our implementation
running the software on a dedicated host (i.e. a quad core Intel
Core i7 CPU, 16 GB RAM). Each logical node was executed by
a dedicated Flask server and after a bootstrap phase, and each
node was connected to its neighbours following the hypercube
topology. More specifically, we run two different types of tests,
one for the Pin Search and one for the Superset Search. In
both cases, we tested the network configuration for 8, 16, 32,
64 and 128 nodes and populated the network each time with
objects generated following a vehicular simulation (as
described below).

With regard to IOTA, two different ways of issuing data on
the Tangle were tested, that is, through a local PoW or by
delegating it to an external IOTA node. In our tests, the IOTA
Mainnet was used. In addition, two types of full nodes
were used:

10 - ZICHICHI ET AL.

� Private node: a node that we set up and connected to
the main IOTA DLT network, dedicated to our requests
only (1 core CPU, 2 GB RAM, 50 GB storage, Virtual
Private Server);

� Public node: a public IOTA DLT network node that ac-
cepts requests to issue messages to and read from the ledger
(https://chrysalis‐nodes.iota.org).

5.1.3 | Insert tests ‐ signalling a hazard

The process of signalling a hazard to the system involves two
operations that are performed in sequence. The first one
consists in generating the IOTA message. This operation in-
volves the creation of a message to be submitted to the DLT
network. Upon generation, the device operating for the vehicle
stores the data related to the hazard into a message, that is, the
geolocation and other structured data representing the hazard
information. Then, it performs the steps necessary for issuing
the message to the DLT, that is, tips selection and PoW. For the
tips selection, na IOTA node maintaining the ledger is needed.
For the PoW, two kinds of situations can happen, that is, the
PoW is locally executed by the user device or the PoW
execution is delegated to an IOTA node. PoW and tips selec-
tion processes are described in Section 2. The second opera-
tion consists in inserting the keywords on the Hypercube
DHT. When a message id is obtained from the previous
operation, the data is inserted into the Hypercube DHT based
on the keywords extracted from the geographical information.

� IOTA Insert Results: The latency delays in the IOTAMainnet
are variable due to the time required for tip selection and the

difficulty of the PoW. The time required for inserting a mes-
sage is, on average, ∼3.6 s for the private node (see Figure 4,
left) and ∼1.5 s for the public one (see Figure 4, right). One
relevant aspect concerns the difference in terms of theway the
PoW is carried out. The insertion times obtained by per-
forming the PoW locally and remotely are shown in Figure 4.
First of all, in both cases it can be seen that although the
insertion of messages with remote PoW seems a bit faster, the
difference between local and remote is not so marked. It is
necessary to keep in mind that, however, nodes with suitable
hardware (for this task) are required to achieve results of this
kind; without them, delegating the PoW burden to the IOTA
node would cause a relevant slowdown [37].

� DHT Insert Results: In the DHT, the latency times depend
on the efficiency of the DHT routing mechanism, as well as
on the size of the network. Figure 5 (left) shows how the
average time for inserting the object in the DHT grows as a
function of the parameter r that determines the size of the
hypercube. Varying from a little more than one second, with
a r = 3, to a little more than two with a r = 6, the average
insertion time is to be considered as low. A second aspect,
visible in Figure 5 (left), concerns the presence of outliers in
all the simulations carried out; in fact, in some cases, the
insertion in the DHT requires longer times than on the
average. The presence of outliers, whose frequency increases
as the size of the network increases, is, in part, due to the
randomness factor in the choice of the node that receives
the request. In fact, if the requested node might be very
distant in terms of the Hamming distance from the node
responsible for the set of keywords K and it may take many
forwards before reaching it. This clearly translates into an
increase of the latency.

F I GURE 4 IOTA insert operation latency, comparing remote and local POW for the private node. The y‐axis shows the number of observations within
certain ranges (bins) of latency values. Vertical dotted lines indicate the average values

ZICHICHI ET AL. - 11

https://chrysalis-nodes.iota.org

5.1.4 | Retrieve tests ‐ searching for hazards

The research process is the one that should maintain a
high grade of decentralisation while offering an efficient
performance and that is what we evaluate here. The pro-
cess of retrieving the hazards from the system involves two
operations performed in sequence, that is, searching the
geolocalised data from the Hypercube DHT and then
fetching the actual hazard information from the IOTA
DLT. As far as the search phase is concerned, a first
evaluation criterion is the efficiency of the DHT routing
mechanism underlying the keyword search process. In the
following, the Pin Search and Superset Search results are
reported. Furthermore, we also analyse the fetch latency
from the IOTA DLT, once the message id has been ob-
tained from the Hypercube DHT.

� Number of Hops Results: As a measure of efficiency, we
consider the hops. A hop occurs when a query message is
passed from one DHT node to the next. The results for the
Pin Search (Figure 6 left) show a similar average hops
number when the number of objects varies and an increase
from 1.28 to 3.52 when increasing the number of nodes.
This was an expected result as the Pin Search average
number of hops should theoretically be with the order of
the logarithm of the number of logical nodes, that is, logðnÞ

2
or r2 . For instance, with 128 nodes, the experienced average
number of hops was around logð128Þ

2 ¼ 3:5. In the case of
Superset Search results are different from the previous case.
As Figure 6 (right) shows, the average number of hops
decreases when the number of objects increases, and it in-
creases when the number of nodes increases. The minimum
value here is 1.36 for 1000 objects and 8 nodes and the

F I GURE 5 DHT Insert, Pin and Superset Search operations latency. Results are reported as box plots and with the plot of a line where the diamond
represents the mean value of the overall latency. The rectangle identifies the Inter‐Quartile Range (IQR), that is, values from the 25th to the 75th percentile,
representing the middle 50% of values. Hence, the lower part of the box (let denote it Q1) is the first quartile (25th percentile), the highest (denote it Q3) is the
third quartile (75th percentile). The blue line inside the box is the median value. The lower and upper values identified by the vertical line are the whiskers. In box
plots, the whiskers are defined as 1.5 times the IQR. Thus, the lower whisker is Q1 ‐ 1.5*IQR, while the upper whisker is Q3 + 1.5*IQR; they represent a
common way to describe the dispersion of the data. Finally, the red ‘�’ symbols outside the whiskers are the outliers

F I GURE 6 Number of hops, that is, when a query message is passed from one Distributed Hash Table (DHT) node to the next. Pin Search results are on
the left, Superset Search ones are on the right

12 - ZICHICHI ET AL.

maximum is 20.36 for 10 objects and 128 nodes. Theoret-
ically, the average number of hops should be equal to the
average hops number required to get to the node respon-
sible for query keywords set K, that is, Pin Search logðnÞ

2 , plus
the average hops number to get from that node to all the
nodes that include K, until the limit of objects l (or nodes
including K) is reached.

� DHT Retrieve Results: In Figure 5, it can be seen that, when
retrieving objects from the DHT, the increase in the size of
the hypercube has a relatively low impact on the overall
latency. In fact, in both types of search, despite the number
of nodes, the average search time, in a relatively complex
situation such as the one assumed in the creation of the
scenarios, is low. The Pin Search has a minimum latency
value of 1 s for r = 3 with an increase to only 1, 6 s when r is
doubled (Figure 5, centre). At the same time, however, the
results present much more outliers when compared to the
Superset Search (Figure 5, right). The Superset Search la-
tencies increase by ∼400 milliseconds with respect to the
Pin Search ones.

� IOTA Retrieve Results: Similarly to what has been done in
the data insert evaluation, that is, assessing the latency of
IOTA, the time taken to retrieve data on the Tangle must
be taken into account in this search phase. In the retrieve
case, the results are much more variable. Moreover,
comparing the results of the public node with those ob-
tained using the private node, there is a negligible differ-
ence in terms of average latency and variability at the
expense of the public one. First of all, the average latency
for the private node is smaller than the public node one,
that is, ∼3.4 opposed to ∼7.1 respectively. Moreover, the
frequency distribution shown in the histogram in Figure 7
presents three spikes with different distances between the
private and public nodes cases. For the private node there
are recorded frequency spikes for latencies at ∼200 ms,
∼3 s and ∼6.5 s. Public nodes results show spikes at
∼500 ms, ∼3 s and ∼13 s.

5.2 | DAO smart contracts

For this part of the system evaluation, we implemented the
governance layer and the rewarding system described in Sec-
tion 4. The implemented smart contracts have been developed
in Solidity and then stored as Open Source code on Zenodo
[48]. The experimentation has been carried out in a local
deployed blockchain following the Ethereum protocol.

We developed four smart contracts, namely:

� DAOToken: the ERC20 token used to exchange value
within the DAO. Anyone holding a certain amount of
tokens can invoke the transfer() method to transfer part of
it.

� TokenTimelock: a smart contract for timelocking tokens. It
receives an amount of tokens to hold until the release()
method is invoked. The invocation can happen only when

the current time comes after the previously set
‘releaseTime’.

� TokenTimelockProxy: a smart contract implementing the
EIP‐1167 Minimal Proxy pattern [49], that clones an already
deployed timelock contract (i.e. the TokenTimelock) func-
tionalities by delegating all methods invocations to it. Basi-
cally, instead of creating new contracts, it creates a series of
proxy objects that refer to the original timelock contract for
executing methods.

� Voting: a smart contract used for submitting proposals and
for voting for those within the DAO. Any DAO member
with a certain amount of tokens locked can invoke sub-
mitProposal() to submit a new proposal. The same or other
members can include suggestions in the proposal by
invoking submitSuggestion(). Then, any member can vote
for a suggestion before the execution deadline using the
vote() method and the vote weight is proportioned to the
amount of tokens the member locked. In any of the pre-
vious cases, having an amount of tokens locked means also
that the lock's releaseTime comes before the execution
deadline. Finally, the most voted suggestion is picked by
invoking executeProposal() after the deadline.

In Table 1, we provide the execution cost in terms of gas
[9] for the main operations. Gas is a unit that measures the
amount of computational effort that takes to execute opera-
tions in Ethereum smart contracts. The most expensive
operation is the lockTokens() function, which locks a certain
amount of an ERC20 Token for a specified amount of time.
This is because, following the OpenZeppelin library for secure
smart contracts development [50], each lock request creates a
new smart contract that locks tokens for a unique account.
However, normally the creation and deployment of such a

F I GURE 7 IOTA retrieve operation latency, comparing private and
public node. The y‐axis shows the number of observations within certain
ranges (bins) of latency values. Vertical lines indicate the average values

ZICHICHI ET AL. - 13

smart contract through the Factory pattern would require at
least 501818 gas units. By using the EIP‐1167 Minimal Proxy
pattern [49], that, instead of deploying a new contract each
time such as in the Factory pattern, creates proxies that invoke
methods of an already deployed contract, we managed to halve
the gas usage of lockTokens(). Moreover, most of the Voting
smart contract methods have a quite high cost in terms of gas.
This depends on the verifications that these operations must
execute, that is, checking that the tokens are locked. This
verification, indeed, is costly in terms of gas because it per-
forms a search operation in another smart contract that is, the
TokenTimelockProxy contract.

6 | DISCUSSION

In this Section, we discuss the results obtained in the tests,
starting with the Hypercube DHT performances, then
continuing with IOTA and the DAO smart contracts.

� In the case of the DHT, the results shown in the previous
section confirm what was expected due to the hypercube
structure of the network: (i) that the queries' number of
hops is of the order of the logarithm of the hypercube
logical nodes number, that is, r; and that (ii) the latency for
insertion does not increase linearly with r. In particular, on
average Pin Search number of hops is equal to logðnÞ

2 ¼
r
2 . For

what concerns the Superset Search number of hops, on
average, it is equal to logðnÞ

2 þ l, where l is the limit of the
number of nodes in the sub‐hypercube to reach. Those
apparently anomalous values stand out, corresponding to a
high number of hops between nodes, which decreases with
the referenced objects number. This phenomenon can be
explained by the fact that the Superset Search traverses the
spanning binomial tree of the sub‐hypercube induced by the
node responsible for the keyword set, until it finds the
number of objects indicated by the limit, that is, l = 10.
Hence, in a network with many nodes and few objects, the
query might take longer to reach that limit, because many
nodes are ‘empty’, that is, they do not refer any object.
Moreover, it should be noted that the two types of search
have a little difference in terms of average latency that is due
to the Superset Search limit parameter l, which in this use

case indicates the geographical area related to the hazards
and to the geoposition of the user executing the query. In
general, the Hypercube DHT results show the goodness of
the solution in the trade‐off between the memory space and
response time. In traditional DLTs, such as Ethereum and
IOTA, indeed, searching for a datum in a message means
traversing all the ‘message sea’ in the ledger and for this
reason, the current solution is to use centralised ‘DLT ex-
plorers’ [51].

� For what does concern IOTA, we need two distinct dis-
cussions for insertion and retrieval. As far as the comparison
between private and public nodes is concerned in the data
insertion, taking into consideration the lowest average la-
tency values, that is, those obtained by opting for remote
PoW, it can be seen that the difference between the two is
almost negligible. In fact, if on the one hand the public
nodes, receiving more messages, are able to provide the tips
faster, on the other hand, they may have fewer computa-
tional resources to provide to the clients for performing the
PoW (because, being public, this node receives more re-
quests to handle). This clearly translates into an increase in
latency of the message insertion process. Although the two
nodes present a similar average insertion time, in the case of
the private node, the variance is much larger. This might be
due to the smaller amount of computational resources
compared to the public node and maybe to the neighbours
connections in the DLT network. In fact, with the same
workload, the results of the private node are much more
erratic. For what does concern the IOTA data retrieval, our
experiments show an unstable latency, probably due to the
load suffered by the DLT nodes. Indeed, the results have a
frequency distribution with three different spikes (Figure 7),
both for the private node and the public one, even if the
private one performs better. Generally, latencies for the data
retrieval are also higher with respect to insertion. All of this
suggests that, since the DLT never stops and nodes always
work for inserting new messages, when in presence of a high
workload, the IOTA nodes give priority to the message
insertion. Indeed, with high workload nodes seem to reply
to a retrieve request with a latency of 13–14 s for public and
6–7 for private nodes, that is, latency near the right‐most
spike in Figure 7. Best case scenario, the response of
nodes for messages retrieval are between 200 and 500 mil-
liseconds, that is, latency near the spikes in the middle.

� Finally, regarding the DAO smart contracts implementation,
the evaluation has shown interesting results in terms of gas
usage. Most of the operations are feasible to execute in a local
or permissioned environment, and follow the standard gas
usage in respect to the already existingDAO implementations
in Ethereum. The only limit seems to be the lockToken()
method in the TokenTimelockProxy contract, but we already
halved its gas usage in our implementation.Wehave not tested
the performances in terms of latency for the interactions with
the Ethereum public blockchain, since these can greatly vary
depending on the transaction fees [52] and/or on the levels of
supply and demand in the network [53], but generally we can
expect a latency that ranges from2 to 60 s [52].Multiplying the

TABLE 1 DAO smart contracts operations cost in terms of gas

Smart contract Operation Gas usage

DAOToken Transfer() 51 167

TokenTimelockProxy lockTokens() 232 024

TokenTimelock Release() 25 626

Voting submitProposal() 133 501

Voting submitSuggestion() 114 523

Voting Vote() 142 848

Voting executeProposal() 56 991

14 - ZICHICHI ET AL.

gas usage for its price, we obtain an indication of the actual
monetary cost for operating with Ethereum. At the time of
writing, executing lockToken() would cost ∼120 dollars, and
obviously, it does not represent a feasible option in most
scenarios. However, this represents a further incentive for the
rise of technologies that operate using the same protocol for
executing Ethereum smart contracts, but with fewer latencies
and a reduced gas price. For instance in Polygon [54], at the
time of writing, the lockToken() method would cost ∼0.05
dollars. Another possibility is to set up a dedicated permis-
sioned Ethereum blockchain, that would further reduce costs.

7 | CONCLUSIONS

In this paper, we proposed a system based on a Hypercube
DHT that provides an efficient content lookup through mul-
tiple keyword‐based queries and that can be applied to
different kinds (or combinations) of DLTs and DFS. In our
proposal, we address the problems of DLTs and DFS
regarding efficient data lookup and the possibility of imple-
menting complex queries but without reinstating an element of
centrality. Our first contribution is the design of such a
decentralised system and its implementation using as the un-
derlying data storage a specific DLT, that is, IOTA. Our sec-
ond contribution is the development of a DAO for the layer‐
two architecture management and its economic sustainability.
With our third contribution, we have shown a case study in
which the proposed architecture is used for geodata storing
and retrieval based on a road hazards detection scenario.

All the layers of the developed decentralised architecture,
that is, (i) data layer, (ii) lookup layer, (iii) DAO organisation,
have been validated through an experimental evaluation. First,
as concerns data retrieval over IOTA, results show that this
technology can be viably exploited to store multiple and var-
iegated data, which can be profitably discovered through the
proposed decentralised system. Second, our results show that,
as expected, the Hypercube DHT on top of a DLT approach
allows for a fast identification of data that satisfy a given
keywords‐based query. In fact, being r the hypercube dimen-
sion (a value in the order of the logarithm on the number of
DHT nodes), on average r2 number of hops (i.e. when a query
message is passed from one DHT node to the next) are
required for a Pin Search, that is, a punctual search based on a
specific set of keywords. As concerns the Superset Search, that
is, a broader search based on a specific set of keywords and on
its supersets, the number of hops depends on the ratio between
the limit l assigned to the query and the distribution of objects
between nodes. Moreover, in our implementation, the latency
for executing the insert and retrieve operations in the Hyper-
cube DHT, runs in sublinear time with respect to r. Third, the
use of Ethereum smart contracts enables the possibility of
voting for making organisational decisions inside the DAO.
Furthermore, the ability to create ERC20 tokens allows for
rewarding nodes that have actively contributed to the operation
of the P2P system.

Apossible extension of our system is to add a ‘pay‐per‐query’
model, where node operators within the DAO are rewarded at
the level of granularity of the query. Another improvement is to
adopt a clever load balancing system to avoid that some nodes
might suffer higher workloads due to the popularity of the
contents/keywords that they are storing.

ACKNOWLEDGEMENTS
This work has received funding from the European Union's
Horizon 2020 research and innovation programme under the
Marie Skłodowska‐Curie International Training Network Eu-
ropean Joint Doctorate grant agreement No 814177 Law,
Science and Technology Joint Doctorate ‐ Rights of Internet of
Everything. This research was also funded in part by the
University of Urbino through the ‘Bit4Food’ research project.
We are indebted to Federica La Piana, Alessio Leurini and
Davide Tropea for their contribution on a preliminary imple-
mentation of the system.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly
available in Zenodo at https://doi.org/10.5281/zenodo.
5810396 and https://doi.org/10.5281/zenodo.4767755.

ORCID
Mirko Zichichi https://orcid.org/0000-0002-4159-4269
Luca Serena https://orcid.org/0000-0002-7951-4682
Stefano Ferretti https://orcid.org/0000-0002-1911-4708
Gabriele D'Angelo https://orcid.org/0000-0002-3690-
6651

REFERENCES
1. Zichichi, M., et al.: Governing decentralized complex queries through a

DAO. In: Proc. of the Conference on Information Technology for Social
Good (GoodIT), pp. 1–6. ACM (2021)

2. Ramachandran, G.S., Radhakrishnan, R., Krishnamachari, B.: Towards a
decentralized data marketplace for smart cities. In: 2018 IEEE Interna-
tional Smart Cities Conference, pp. 1–8. ISC2 (2018). https://doi.org/10.
1109/ISC2.2018.8656952

3. Zichichi, M., Ferretti, S., D’Angelo, G.: A Framework Based on
Distributed Ledger Technologies for Data Management and Services in
Intelligent Transportation Systems. IEEE Access (2020)

4. Park, J.‐S., et al.: Smart contract‐based review system for an iot data
marketplace. Sensors. 18(10), 3577 (2018)

5. Özyilmaz, K.R., Doğan, M., Arda, Y.: IDMoB: IoT data marketplace on
blockchain. In: Proc. of the Crypto Valley Conference on Blockchain
Technology (CVCBT). IEEE (2018)

6. Ferretti, S., D’Angelo, G.: On the ethereum blockchain structure: a
complex networks theory perspective. Concurrency Comput. Pract.
Ex. 32(12), e5493

7. Belotti, M., et al.: A vademecum on blockchain technologies: when,
which, and how. IEEE Commun Sur & Tutorials. 21(4), 3796–3838
(2019)

8. Santos, J., Santos, N., Dias, D.: Dclaims: A Censorship Resistant Web
Annotations System Using Ipfs and Ethereum (2019). arXiv preprint
arXiv:1912.03388

9. Buterin, V., et al.: Ethereum White Paper (2013). https://github.com/
ethereum/wiki/wiki/White‐Paper

10. Popov, S.: The Tangle (2016). https://iota.org/IOTA_Whitepaper.pdf
11. Benet, J. Ipfs‐content addressed, versioned, p2p file system (2014) arXiv

preprint arXiv:1407.3561

ZICHICHI ET AL. - 15

https://doi.org/10.5281/zenodo.5810396
https://doi.org/10.5281/zenodo.5810396
https://doi.org/10.5281/zenodo.4767755
https://orcid.org/0000-0002-4159-4269
https://orcid.org/0000-0002-4159-4269
https://orcid.org/0000-0002-7951-4682
https://orcid.org/0000-0002-7951-4682
https://orcid.org/0000-0002-1911-4708
https://orcid.org/0000-0002-1911-4708
https://orcid.org/0000-0002-3690-6651
https://orcid.org/0000-0002-3690-6651
https://orcid.org/0000-0002-3690-6651
https://doi.org/10.1109/ISC2.2018.8656952
https://doi.org/10.1109/ISC2.2018.8656952
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://iota.org/IOTA_Whitepaper.pdf
https://orcid.org/0000-0002-4159-4269
https://orcid.org/0000-0002-7951-4682
https://orcid.org/0000-0002-1911-4708
https://orcid.org/0000-0002-3690-6651

12. Joung, Y.‐J., Yang, L.‐W., Fang, C.‐T.: Keyword search in dht‐based peer‐
to‐peer networks. IEEE J. Sel. Area. Commun. 25(1), 46–61 (2007)

13. Jentzsch, C.: Decentralized Autonomous Organization to Automate
Governance. White paper (November, 2016). https://lawofthelevel.
lexblogplatformthree.com/wp‐content/uploads/sites/187/2017/07/W
hitePaper‐1.pdf

14. ISO/TC 211. Geographic information ‐ reference model. International
Standard. Technical report, vol. 19101. ISO/IEC (2002)

15. Bargiotti, L., et al.: Guidelines for Public Administrations on Location
Privacy: European Union Location Framework. Technical report. Joint
Research Centre (Seville site) (2016)

16. D’Angelo, G., Ferretti, S.: Highly intensive data dissemination in complex
networks. J. Parallel Distr. Comput. 99, 28–50 (2017)

17. Ratnasamy, S., et al.: A scalable content‐addressable network. In: Pro-
ceedings of the 2001 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications, vol. 31, pp.
161–172 (2001)

18. Aiello, M., et al.: Ippo: A Privacy‐Aware Architecture for Decentralized
Data‐Sharing (2020). arXiv preprint arXiv:2001.06420

19. Mehedi Hassan Onik, Md., et al.: Privacy‐aware blockchain for personal
data sharing and tracking. Open. Com. Sci. 9(1), 80–91 (2019)

20. Bez, M., Fornari, G., Vardanega, T.: The scalability challenge of ether-
eum: an initial quantitative analysis. In: 2019 IEEE International Con-
ference on Service‐Oriented System Engineering (SOSE), pp. 167–176.
IEEE (2019)

21. Lewis, G., et al.: Sok: layer‐two blockchain protocols. In: International
Conference on Financial Cryptography and Data Security. Springer (2020)

22. James, B., Baskaran, I., Ramachandran, N.: Authenticating health activity
data using distributed ledger technologies. Comput. Struct. Biotechnol. J.
16 (2018)

23. Buterin, V., Vogelsteller, F.: Eip‐20: Erc‐20 Token Standard (2015).
https://eips.ethereum.org/EIPS/eip‐20

24. Werner, S.M., et al.: Sok: Decentralized Finance (Defi) (2021). arXiv
preprint arXiv:2101.08778

25. Guidi, B., Michienzi, A., Ricci, L.: Data persistence in decentralized social
applications: the ipfs approach. In: 2021 IEEE 18th Annual Consumer
Communications & Networking Conference (CCNC), pp. 1–4. IEEE
(2021)

26. Crabtree, A., et al.: Building accountability into the internet of things: the
iot databox model. J. Reliable Intelligent Environ. 4(1), 39–55 (2018)

27. European Commission: European Data Governance (Data Governance
Act) (2020)

28. de la Vega, F., et al.: A peer‐to‐peer architecture for distributed data
monetization in fog computing scenarios. Wireless Commun. Mobile
Comput. 2018 (2018)

29. Zhu, L., Xiao, C., Gong, X.: Keyword search in decentralized storage
systems. Electronics. 9(12), 2041 (2020)

30. Serena, L., Ferretti, S., D’Angelo, G.: Cryptocurrencies activity as a
complex network: analysis of transactions graphs. Peer‐to‐Peer Netw.
Appl. 15, 839‑853 (2022)

31. The Graph: The Graph Protocol (2020). https://thegraph.com/
32. Community, I.P.F.S.: Search Engine for the Interplanetary File System

(2021). https://github.com/ipfs‐search/ipfs‐search
33. Khudhur, N., Fujita, S.: Siva‐the ipfs search engine. In: 2019 Seventh

International Symposium on Computing and Networking (CANDAR),
pp. 150–156. IEEE (2019)

34. Jiang, P., et al.: Searchain: blockchain‐based private keyword search in
decentralized storage. Future Generat. Comput. Syst. 107, 781–792
(2020). ISSN 0167‐739X. https://doi.org/10.1016/j.future.2017.08.036

35. Zhu, L., Xiao, C., Gong, X.: Keyword search in decentralized storage
systems. Electronics. 9(12), 2020. ISSN 2079‐9292. https://doi.org/10.
3390/electronics9122041

36. Zichichi, M., Ferretti, S., D’Angelo, G.: On the efficiency of decentralized
file storage for personal information management systems. In: Proc. of

the 2nd International Workshop on Social (Media) Sensing, Co‐located
with 25th IEEE Symposium on Computers and Communications 2020
(ISCC2020), pp. 1–6. IEEE (2020)

37. Zichichi, M., Ferretti, S., D’Angelo, G.: Are distributed ledger technol-
ogies ready for intelligent transportation systems? In: Proc. of the 3rd
Workshop on Cryptocurrencies and Blockchains for Distributed Systems
(CryBlock 2020), Co‐located with the 26th Annual International Con-
ference on Mobile Computing and Networking (MobiCom 2020), pp.
1–6. ACM (2020)

38. IPLD Team: Interplanetary Linked Data (Ipld) (2016). https://specs.ipld.
io/

39. Guidi, B.: An overview of blockchain online social media from the
technical point of view. Appl. Sci. 11(21), 9880 (2021)

40. Guidi, B., Michienzi, A., Ricci, L.: Steem blockchain: mining the inner
structure of the graph. IEEE Access. 8, 210251–210266 (2020)

41. Rinckes, D., Bunge, P.: Open Location Code: An Open Source Standard
for Addresses Independent of Building Numbers and Street Names
(2015). https://github.com/google/open‐locationcode/blob/master/
docs/olc definition.adoc (accessed Dic 2021)

42. Hamari, J., Sjöklint, M., Ukkonen, A.: The sharing economy: why people
participate in collaborative consumption. J. Assoc. Inform Sci & Technol.
67(9), 2047–2059 (2016)

43. Pazaitis, A., De Filippi, P., Kostakis, V.: Blockchain and value systems in
the sharing economy: the illustrative case of backfeed. Technol. Forecast.
Soc. Change. 125, 105–115 (2017)

44. Zichichi, M., et al.: Likestarter: a Smart‐contract based social DAO for
crowdfunding. In: Proc. of the 2st Workshop on Cryptocurrencies and
Blockchains for Distributed Systems (2019)

45. Distefano, B., Pocher, N., Zichichi, M.: MOATcoin: exploring challenges
and legal implications of smart contracts through a gamelike DApp
experiment. In: Proc. of the 3rd Workshop on Cryptocurrencies and
Blockchains for Distributed Systems (CryBlock 2020), Co‐located with
the 26th Annual International Conference on Mobile Computing and
Networking (MobiCom 2020), pp. 1–6. ACM (2020)

46. Grinberg, M.: Flask Web Development: Developing Web Applications
with python. O’Reilly Media, Inc. (2018)

47. felap96, Zichichi, M.: miker83z/hypercube_vehicles (December 2021).
https://doi.org/10.5281/zenodo.5810396

48. Zichichi, M.: HypercubeDAOContracts (May 2021). https://doi.org/10.
5281/zenodo.4767755

49. Murray, J.M.P., Welch, N.: Eip‐1167: Minimal Proxy Contract (2018).
https://eips.ethereum.org/EIPS/eip‐1167

50. OpenZeppelin. Openzeppelin Website. https://openzeppelin.com/,
2021

51. Blockchain.com. Blockchain Explorer, 2020. https://www.blockchain.
com/explorer

52. Zhang, L., et al.: Evaluation of ethereum end‐to‐end transaction latency.
In: 2021 11th IFIP International Conference on New Technologies,
Mobility and Security (NTMS). IEEE (2021)

53. Spain, M., Foley, S., Gramoli, V.: The impact of ethereum throughput and
fees on transaction latency during icos. In: International Conference on
Blockchain Economics, Security and Protocols (Tokenomics 2019).
Schloss Dagstuhl‐Leibniz‐Zentrum für Informatik (2020)

54. Polygon ‐ Ethereum’s Internet of Blockchains, 2021. https://polygon.
technology/papers/

How to cite this article: Zichichi, M., et al. Complex
queries over decentralised systems for geodata retrieval.
IET Netw. 1–16 (2022). https://doi.org/10.1049/ntw2.
12037

16 - ZICHICHI ET AL.

https://lawofthelevel.lexblogplatformthree.com/wp-content/uploads/sites/187/2017/07/WhitePaper-1.pdf
https://lawofthelevel.lexblogplatformthree.com/wp-content/uploads/sites/187/2017/07/WhitePaper-1.pdf
https://lawofthelevel.lexblogplatformthree.com/wp-content/uploads/sites/187/2017/07/WhitePaper-1.pdf
https://eips.ethereum.org/EIPS/eip-20
https://thegraph.com/
https://github.com/ipfs-search/ipfs-search
https://doi.org/10.1016/j.future.2017.08.036
https://doi.org/10.3390/electronics9122041
https://doi.org/10.3390/electronics9122041
https://specs.ipld.io/
https://specs.ipld.io/
https://github.com/google/open-locationcode/blob/master/docs/olc%A0definition.adoc
https://github.com/google/open-locationcode/blob/master/docs/olc%A0definition.adoc
https://doi.org/10.5281/zenodo.5810396
https://doi.org/10.5281/zenodo.4767755
https://doi.org/10.5281/zenodo.4767755
https://eips.ethereum.org/EIPS/eip-1167
https://openzeppelin.com/
https://www.blockchain.com/explorer
https://www.blockchain.com/explorer
https://polygon.technology/papers/
https://polygon.technology/papers/
https://doi.org/10.1049/ntw2.12037
https://doi.org/10.1049/ntw2.12037

	Complex queries over decentralised systems for geodata retrieval
	1 | INTRODUCTION
	2 | BACKGROUND
	2.1 | Distributed Hash Table
	2.2 | Distributed Ledger Technologies (DLTs)
	2.2.1 | IOTA
	2.2.2 | Smart contracts and their use cases (Decentralised Autonomous Organisation and decentralised finance)

	2.3 | Decentralised file storage
	2.4 | Related works

	3 | SYSTEM ARCHITECTURE
	3.1 | Decentralised system for data sharing
	3.2 | Hypercube distributed hash table
	3.3 | Keyword‐based complex queries
	3.3.1 | Multiple keywords search
	3.3.2 | The query routing mechanism

	3.4 | Geoposition‐based keywords encoding

	4 | DECENTRALISED AUTONOMOUS ORGANISATION FRAMEWORK
	4.1 | Governance layer
	4.2 | Rewarding system

	5 | EXPERIMENTAL EVALUATION
	5.1 | Road hazard detection use case
	5.1.1 | Vehicular simulation
	5.1.2 | Test setup
	5.1.3 | Insert tests ‐ signalling a hazard
	5.1.4 | Retrieve tests ‐ searching for hazards

	5.2 | DAO smart contracts

	6 | DISCUSSION
	7 | CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT

